Бесщеточные двигатели постоянного тока

Операция

При взгляде снаружи он работает на постоянном токе . Его название (от английского Brushless ) происходит от того факта, что этот тип двигателя не содержит вращающегося коллектора и, следовательно, щеток. С другой стороны, электронная система управления должна обеспечивать переключение тока в обмотках статора. Это устройство может быть встроено в двигатель малой мощности или внешнее в виде преобразователя мощности ( инвертора ). Роль узла датчика плюс электронное управление заключается в обеспечении самоконтроля двигателя, то есть ортогональности магнитного потока ротора по отношению к потоку статора, роль, ранее возложенная на узел. машина постоянного тока .

Трехфазные бесколлекторные электродвигатели

Очень много бесколлекторных электродвигателей для авиамоделей выполняется под питание постоянным током.

Но существуют и трехфазные экземпляры, в которых устанавливаются преобразователи.

Они позволяют из постоянного напряжения сделать трехфазные импульсы.

Бесщеточные двигатели постоянного тока

Работа происходит следующим образом:

  1. На катушку «А» поступают импульсы с положительным значением. На катушку «В» — с отрицательным значением. В результате этого якорь начнет двигаться. Датчики фиксируют смещение и подаётся сигнал на контроллер для осуществления следующей коммутации.
  2. Происходит отключение катушки «А», при этом импульс положительного значения поступает на обмотку «С». Коммутация обмотки «В» не претерпевает изменений.
  3. На катушку «С» попадается положительный импульс, а отрицательный поступает на «А».
  4. Затем вступает в работу пара «А» и «В». На них и подаются положительные отрицательные значения импульсов соответственно.
  5. Затем положительный импульс опять поступает на катушку «В», а отрицательный на «С».
  6. На последнем этапе происходит включение катушки «А», на которую поступает положительный импульс, и отрицательный идет к С.

И после этого происходит повтор всего цикла.

Приложения

Внешние ссылки

Электрическая машина

Машины Динамо  · электрогенератор  · машина постоянного тока  · Асинхронная машина  · Электростатическая машина  · Синхронная машина  · шаговый двигатель  · Бесщеточный двигатель  · Универсальный двигатель  · Колесо Барлоу  · пьезоэлектрический двигатель  · Трансформатор
Физические концепции Электричество  · Движущая сила  · Пьезоэлектричество

Электричество

Общность
  • Глоссарий
  • История
  • Экономика
  • Электрическая цепь ( сила тока , электрическое напряжение )
Измерено
  • Амперметр ( токоизмерительные клещи )
  • Мультиметр
  • Омметр
  • Вольтметр
  • Ваттметр
Составная часть
  • Антенна
  • Аккумулятор
  • Барабаны
  • Катушка
  • Конденсатор
  • Водитель
  • Связь
  • Диод
  • Электрическая машина
  • Аккумулятор
  • Сопротивление
  • Реостат
  • Шунт
  • Суперконденсатор
  • Термистор
Теоретические представления
  • Прием
  • Вместимость
  • Проводимость
  • Проводимость
  • Текущий
  • Импеданс
  • Индуктивность
  • Реактивность
  • Удельное сопротивление
  • Принятие
  • Напряжение
  • Скорость электричества
  • Автоматический
  • Электрохимия
  • Электромагнетизм
  • Электронный
  • Электротехника
  • Робототехника
  • Обработка сигналов
  • Портал электричества и электроники
  • Энергетический портал

Варианты конструкции [ править ]

В этом разделе не процитировать любые источники . Пожалуйста, помогите улучшить этот раздел , добавив цитаты из надежных источников . Материал, не полученный от источника, может быть оспорен и удален . ( Май 2018 г. ) ( Узнайте, как и когда удалить этот шаблон сообщения )

Схема для стилей намотки треугольником и звездой. (Это изображение не иллюстрирует индуктивные и генераторные свойства двигателя)

Бесщеточные двигатели могут быть сконструированы в нескольких различных физических конфигурациях: В «традиционной» (также известной как внутренняя ) конфигурация постоянные магниты являются частью ротора. Ротор окружен тремя обмотками статора. В конфигурации внешнего ротора (или внешнего ротора) радиальное соотношение между катушками и магнитами обратное; Катушки статора образуют центр (сердечник) двигателя, в то время как постоянные магниты вращаются внутри выступающего ротора, который окружает сердечник. Плоский или осевой тип потокаиспользуется там, где есть ограничения по пространству или форме, в нем используются пластины статора и ротора, установленные лицом к лицу. У аутраннеров обычно больше полюсов, они объединены в три группы для поддержания трех групп обмоток и имеют более высокий крутящий момент на низких оборотах. Во всех бесщеточных двигателях катушки неподвижны.

Существуют две распространенные конфигурации электрических обмоток; конфигурация треугольника соединяет три обмотки друг с другом ( последовательные цепи ) в треугольную схему, и питание подается на каждое из соединений. Конфигурация звезда ( Y- образная), иногда называемая звездообразной обмоткой, соединяет все обмотки с центральной точкой ( параллельные цепи ), и питание подается на оставшийся конец каждой обмотки.

Двигатель с обмотками в треугольной конфигурации дает низкий крутящий момент на низкой скорости, но может дать более высокую максимальную скорость. Конфигурация «звезда» обеспечивает высокий крутящий момент на низкой скорости, но не такую ​​высокую максимальную.

Хотя на эффективность сильно влияет конструкция двигателя, звездообразная обмотка обычно более эффективна. В обмотках, соединенных треугольником, половинное напряжение прикладывается к обмоткам, прилегающим к ведомому выводу (по сравнению с обмоткой непосредственно между ведомыми выводами), увеличивая резистивные потери. Кроме того, обмотки могут позволить паразитным электрическим токам высокой частоты полностью циркулировать внутри двигателя. Обмотка, соединенная звездой, не содержит замкнутого контура, в котором могут протекать паразитные токи, предотвращая такие потери.

С точки зрения контроллера, два стиля обмоток обрабатываются одинаково.

Бесщеточный быстрее, чем щеточный

Бесщеточный двигатель — это тип двигателя постоянного тока, который не содержит щетку в качестве своих частей.

Предположим, что щеточный двигатель и бесщеточный двигатель имеют одинаковые характеристики. В этом случае бесщеточный двигатель будет быстрее, так как его эффективность выше, чем у щеточного двигателя.

Из-за меньшего трения и меньшего тепловыделения, что приводит к оптимальному использованию мощности в бесщеточном двигателе, где скорость щеточного двигателя ограничена щетками и коммутатором двигателя, где скорость бесщеточного двигателя зависит от подшипника и скорости вращения контроллер.

Объяснение программы для Arduino

Полный код программы приведен в конце статьи, здесь же мы рассмотрим только его основные фрагменты.

Для управления BLDC двигателем мы будем формировать ШИМ сигнал с частотой 50 Гц и изменяемым от 0 до 100% коэффициентом заполнения. Значение коэффициента заполнения будет управляться с помощью потенциометра. То есть, вращая потенциометр, мы будем управлять скоростью вращения двигателя. Как уже указывалось, управление BLDC двигателем очень похоже на управление сервомотором с помощью ШИМ 50 Гц, поэтому в данном случае мы будем использовать ту же самую библиотеку, которую использовали для управления сервомотором. Если вы начинающий в изучении платформы Arduino, то перед дальнейшим прочтением данной статьи рекомендуем вам изучить принципы формирования ШИМ сигнала в Arduino и подключение сервомотора к плате Arduino.

ШИМ сигнал можно генерировать только на тех цифровых контактах платы Arduino, которые обозначены символом ~. В нашей схеме мы будем управлять контроллером ESC с контакта 9 платы Arduino, поэтому следующей командой мы прикрепим контроллер ESC к этому контакту:

Популярные статьи  Схема подключения розеток

Arduino

ESC.attach(9);

1 ESC.attach(9);

Коэффициент заполнения ШИМ (от 0 до 100%) управляется с помощью положения ручки потенциометра. То есть когда на выходе потенциометра у нас будет 0V (0 на выходе АЦП), у нас коэффициент заполнения будет равен 0, а когда на выходе потенциометра будет 5V (1023 на выходе АЦП), коэффициент заполнения ШИМ будет равен 100%. Поэтому мы будем использовать функцию, которая будет считывать значение с выхода АЦП контакта A0.

Arduino

int throttle = analogRead(A0);

1 intthrottle=analogRead(A0);

Затем мы должны конвертировать полученное значение (оно будет в диапазоне от 0 до 1023) в диапазон от 0 до 180. В дальнейшем значение 0 у нас будет означать 0% коэффициент заполнения ШИМ, а значение 180 – 100% коэффициент заполнения ШИМ. Конвертация значения из диапазона 0-1023 в диапазон 0-180 будет осуществляться с помощью функции:

Arduino

throttle = map(throttle, 0, 1023, 0, 180);

1 throttle=map(throttle,,1023,,180);

В дальнейшем мы должны передать это значение в функцию управления двигателем, чтобы сформировать соответствующий ШИМ сигнал на необходимом нам контакте. Поскольку мы дали нашему серво объекту имя ESC, то команда для управления им будет выглядеть следующим образом:

Arduino

ESC.write(throttle);

1 ESC.write(throttle);

Реализации контроллера

Поскольку контроллер реализует функции традиционных щеток, ему требуется ориентация / положение ротора (относительно статор катушки). Это происходит автоматически в щеточном двигателе из-за фиксированной геометрии вала ротора и щеток. В некоторых дизайнах используется Датчики на эффекте Холла или поворотный энкодер для прямого измерения положения ротора. Другие измеряют противо-ЭДС в неприводных катушках для определения положения ротора, устраняя необходимость в отдельных датчиках эффекта Холла, и поэтому их часто называют бессенсорный контроллеры.

Типичный контроллер содержит три двунаправленных выхода (т. Е. Трехфазный выход с частотным регулированием), которые управляются логической схемой. Простые контроллеры используют компараторы, чтобы определить, когда следует увеличить выходную фазу, в то время как более продвинутые контроллеры используют микроконтроллер для управления ускорением, контроля скорости и точной настройки эффективности.

Контроллеры, которые определяют положение ротора на основе обратной ЭДС, имеют дополнительные проблемы при инициировании движения, поскольку обратная ЭДС не возникает, когда ротор неподвижен. Обычно это достигается путем начала вращения с произвольной фазы, а затем перехода к правильной фазе, если обнаруживается, что это неверно. Это может вызвать кратковременное вращение двигателя в обратном направлении, что еще больше усложнит последовательность запуска. Другие бессенсорные контроллеры могут измерять насыщение обмотки, вызванное положением магнитов, для определения положения ротора.

Два ключевых рабочих параметра бесщеточных двигателей постоянного тока: моторные константы KТ{ displaystyle K_ {T}} (постоянная крутящего момента) и Kе{ displaystyle K_ {e}} (противо-ЭДС постоянная, также известная как постоянная скорости KV=1Kе{ displaystyle K_ {V} = {1 over K_ {e}}}).

Бесщеточный мотор преимущества и недостатки

Бесщеточный мотор гарантирует более длительный срок службы, поскольку на самом деле нет щетки, чтобы его изнашивать. Они могут работать более 1000 часов. Безщеточные моторы более энергоэффективны, чем щеточные.

Однако они изначально стоят дороже, чем щеточные моторы. Вам также необходимо коммутировать устройства, такие как кодировщики и контроллеры.

Щеточный двигатель сильно шумит, тогда как их бесщеточные аналоги менее шумные. Бесщеточный двигатель также предлагает более высокое отношение крутящего момента к весу. Что еще? Нет необходимости иметь дело с ионизирующими искрами от коммутатора и электромагнитными помехами.

Конструкция бесколлекторного электро-двигателя и его принцип работы

Бесщеточные двигатели постоянного тока

Как мы обсудили выше, бесколлекторный электро-двигатель не оснащен коллекторным узлом. Его функцию выполняют сетевой переключатель на полупроводниковых триодах.

Именно радиоэлектронный компонент переключает витки провода неподвижной основы двигателя, при котором одновременно возникает магнитное поле активного вращения, которое начинает вступать в действие с полем валом устройства.

В момент протекания электро-тока через объект проводящий ток в зоне магнитного поля, на него давит сила Ам, благодаря которой и возникает вращающийся момент на роторе электро-двигателя.

На такой не сложной работе основан весь принцип действия бесколлекторного двигателя.

Прежде всего, на неподвижной основе бесколлекторного двигателя чаще всего размещенный три витка проводов, по тому же принципу, что и жилы трех фаз в двигателях переменного электро-тока, потому изредка их именуют 3-х фазными, хотя данный термин подходит только отчасти.

Бесщеточные двигатели постоянного тока

Итоговый результат напряжения тока, который поступает на витки, образуется сигналами управления полупроводниковых триодов по схеме «прямоугольник».

Так называемый, 3-х фазный бесколлекторный привод может быть оснащен либо тремя проводами, либо четырьмя, если тип обвития проводов по схеме «звезда».

Витки медных жил располагаются, в так называемых «зазубринах», основы неподвижного элемента устройства.

Ввиду того, что конструкции бесколлекторного двигателя могут отличаться, точно также как и их предназначение, количество витков проводов, катушек или обмоток, что подразумевает одно и тоже, может отличаться. Также существует несколько схем витков.

Бесщеточные двигатели постоянного тока

В зависимости от выбранной схемы, жили витков в каждой зазубрине, могут быть соединены поочередно или напротив друг друга. Также существует аналогичный вариант, как у ДПТ по схеме «звезда» или «треугольник».

Как мы писали выше, все зависит от поставленной цели перед определенным устройством.

Рекомендуем просмотреть рисунки ниже.

Кроме того, неподвижная основа, или статор, может быть оснащена автоматическими датчиками реагирования положения вала. Нередко используют известные и распространенные магнитные микрокомпоненты Холла, которые используются в бытовой технике, например, стиральных машинах.

Именно они могу давать соответствующий сигнальный импульс на контролирующий переключатель, под воздействием магнитного поля вала.

Такой процесс крайне важен, поскольку переключателю необходимо вовремя изменить подачу питания на нужные витки проводов катушки. Благодаря этому, электро-двигатель будет работать максимально эффективно без пустой траты ресурсов.

Бесщеточные двигатели постоянного тока

Чаще всего на один бесколлекторный привод устанавливают три датчика, которых вполне хватает. Однако их наличие немного усложняет конструкцию, но для многих специалистов подвести пару дополнительных кабелей для питания, не составит особого труда.

Кроме того, для активизации работы электро-двигателя всегда монтируются магниты на вале, а для остановки – на неподвижном элементе.

Как вы наверняка знаете, в двигателях с коллекторными узлами принцип в точности наоборот, важно не перепутать этот момент и уделить ему достаточно внимания. Сами магнитные элементы монтируются по чередованию положительного заряда, однако это не значит, что количество элементов прямо пропорционально количеству положительных зарядов

Сами магнитные элементы монтируются по чередованию положительного заряда, однако это не значит, что количество элементов прямо пропорционально количеству положительных зарядов.

Несколько элементов могут образовывать один положительный заряд. Как в случае и с другими электро-двигателями, количество положительных зарядом равно количеству вращений вала в минуту.

Популярные статьи  Что такое бесколлекторный двигатель постоянного тока и его принцип работы

Производители электродвигателей

Российские производители электродвигателей

Регион Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
СДОВ СДПМ, серво СРД, СГД Шаговый
Краснодарский край Армавирский электротехнический завод
Свердловская область Баранчинский электромеханический завод
Владимир Владимирский электромоторный завод
Санкт-Петербург ВНИТИ ЭМ
Москва ЗВИМосковский электромеханический завод имени Владимира Ильича
Пермь ИОЛЛА
Республика Марий Эл Красногорский завод «Электродвигатель»
Воронеж МЭЛ
Новочеркасск Новочеркасский электровозостроительный завод
Санкт-Петербург НПО «Электрические машины»
Томская область НПО Сибэлектромотор
Новосибирск НПО Элсиб
Удмуртская республика Сарапульский электрогенераторный завод
Киров Электромашиностроительный завод Лепсе
Санкт-Петербург Ленинградский электромашиностроительный завод
Псков Псковский электромашиностроительный завод
Ярославль Ярославский электромашиностроительный завод

Аббревиатура:

  • АДКР —
  • АДФР —
  • СДОВ — синхронный двигатель с обмоткой возбуждения
  • СДПМ — синхронный двигатель с постоянными магнитами
  • СРД — синхронный реактивный двигатель
  • СГД — синхронный гистерезисный двигатель
  • УД — универсальный двигатель
  • КДПТ — коллекторный двигатель постоянного тока
  • КДПТ ОВ —
  • КДПТ ПМ —

Производители электродвигателей ближнего зарубежья

Страна Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
СДОВ СДПМ, серво СРД, СГД Шаговый
Беларусь Могилевский завод «Электродвигатель»
Беларусь Полесьеэлектромаш
Украина Харьковский электротехнический завод «Укрэлектромаш»
Молдова Электромаш
Украина Электромашина
Украина Электромотор
Украина Электротяжмаш

Производители электродвигателей дальнего зарубежья

Страна Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
СДОВ СДПМ, серво СРД, СГД Шаговый
Швейцария ABB Limited
США Allied Motion Technologies Inc.
США Ametek Inc.
США Anaheim automation
США Arc System Inc.
Германия Baumueller
Словения Domel
США Emerson Electric Corporation
США General Electric
США Johnson Electric Holdings Limited
Германия Liebherr
Швейцария Maxon motor
Япония Nidec Corporation
Германия Nord
США Regal Beloit Corporation
Германия Rexroth Bosch Group
Германия Siemens AG
Бразилия WEG

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
И.В.Савельев. Курс общей физики, том I. Механика, колебания и волны, молекулярная физика.-М.:Наука, 1970.
ГОСТ 29322-92 (МЭК 38-83) Стандартные напряжения.
ГОСТ 16264.0-85 Электродвигатели малой мощности
А.И.Вольдек, В.В.Попов. Электрические машины. Машины переменного тока: Учебник для вузов.- СПб.: Питер, 2007.
Paul Waide, Conrad U. Brunner. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems. International Energy Agency Working Paper, Energy Efficiency Series.: Paris, 2011.
Dr. J. Merwerth. The hybrid-synchronous machine of the new BMW i3 & i8 challenges with electric traction drives for vehicles. BMW Group, Workshop University Lund: Lund, 2014.

Тестирование работы схемы

Сделайте все необходимые соединения в схеме, загрузите программу в плату Arduino и подайте питание на контроллер ESC. Убедитесь в том, что ваш BLDC двигатель надежно закреплен, иначе он будет прыгать во время вращения. Когда вы подадите питание на контроллер ESC вы услышите приветственный тон и он будет издавать этот звук до тех пор пока не поступит управляющий сигнал заданного уровня (в заданных границах). Начните постепенно вращать ручку потенциометра чтобы на его выходе напряжение стало отличным от 0, и этот звук прекратится. Это будет означать, что вы подали на контроллер ШИМ сигнал минимально допустимого уровня. При дальнейшем вращении ручки потенциометра двигатель начнет медленно вращаться. При дальнейшем повороте ручки потенциометра и увеличении напряжения на его выходе скорость вращения двигателя будет увеличиваться. Когда напряжение достигнет верхней допустимой границы двигатель остановится. В дальнейшем вы можете повторить весь этот процесс заново.

Бесщеточные двигатели постоянного тока

Применение

Области применения БДТП следующие:

  • создание моделей;
  • медицина;
  • автомобилестроение;
  • нефтегазовая промышленность;
  • бытовые приборы;
  • военная техника.

Бесщеточные двигатели постоянного токаИспользование БД для авиамоделей дает значительное преимущество по мощности и габаритам. Сравнение обычного коллекторного двигателя типа Speed-400 и БДТП того же класса Astro Flight 020 показывает, что двигатель первого типа имеет кпд 40-60%. Кпд второго двигателя в тех же условиях может достигать 95%. Таким образом, использование БД позволяет увеличить почти в 2 раза мощность силовой части модели или время ее полета.

Благодаря малому шуму и отсутствию нагревания при работе БДПТ широко используются в медицине, особенно в стоматологии.

В автомобилях такие двигатели используются в подъемниках стекол, электростеклоочистителях, омывателях фар и электрорегуляторах подъема кресел.

Отсутствие коллектора и искрения щеток позволяет использовать БД в качестве элементов запорных устройств в нефтегазовой промышленности.

В качестве примера использования БД в бытовой технике можно отметить стиральную машину с прямым приводом барабана компании LG. Эта компания использует БДТП типа Outrunner. На роторе двигателя имеется 12 магнитов, а на статоре – 36 катушек индуктивности, которые намотаны проводом диаметром в 1 мм на сердечники из магнитопроводящей стали. Катушки соединены последовательно по 12 штук в фазе. Сопротивление каждой фазы равно 12 Ом. В качестве датчика положения ротора используется датчик Холла. Ротор двигателя крепится к баку стиральной машины.

Бесщеточные двигатели постоянного токаПовсеместно данный двигатель используется в жестких дисках для компьютеров, что делает их компактными, в CD и DVD приводах и системах охлаждения для микро-электронотехнических устройств и не только.

Наряду с БД малой и средней мощности в промышленности с тяжелыми условиями работы, судовой и военной промышленностях все больше используются большие БДПТ.

БД большой мощности разработаны для американских ВМС. Например, компания Powertec разработала БДТП мощностью 220 кВт со скоростью в 2000 об/мин. Момент двигателя достигает 1080 Нм.

Кроме указанных областей, БД применяются в проектах станков, прессов, линий для обработки пластмасс, а также в ветроэнергетике и использовании энергии приливных волн.

Принцип работы БДКП

Бесщеточные двигатели постоянного тока

В бесколлекторном электродвигателе роль механического коммутатора выполняет электронный преобразователь. Это позволяет осуществить «вывернутая наизнанку» схема БДКП — его обмотки расположены на статоре, что исключает необходимость в коллекторе.

Иными словами, основное принципиальное различие между классическим двигателем и БДКП в том, что вместо стационарных магнитов и вращающихся катушек последний состоит из неподвижных обмоток и вращающихся магнитов. Несмотря на то что сама коммутация в нём происходит похожим образом, её физическая реализация в бесщёточных приводах гораздо более сложна.

Какой шуруповерт лучше: щеточный или бесщеточный

Для многих приобретение инструментов сложный и длительный процесс. Необходимо изучать технологические характеристики, сравнивать модели и их стоимость. Поэтому выбирая из нескольких вариантов: шуруповерт безщеточный или обычный, какой лучше может сказать только профессионал или человек, который пользовался ими на практике.

Понятно, что технически преимуществ у бесщеточных моторов гораздо больше. У него самый высокий КПД, доходящий до 90 %. Данный показатель у остальных видов изделий намного ниже.

Возможность обходится без зарядки ценна, только когда рядом нет сети электричества.

Таким образом, инверторный шуруповерт выгоднее из-за своих характеристик и эффективности. Но цена слишком высока для широкого круга покупателей.

У классических вариантов технология надежная и проверенная. Их легко ремонтировать, кроме того, стоимость деталей не велика. Для многих это оптимальный вариант. Главное при выборе — проверить качество прибора.

Конечно, более дорогой бесщеточный вариант лучше. Но здесь каждый покупатель должен решать исходя из собственных финансовых, пользовательских приоритетов.

Популярные статьи  Штробление стен под проводку

Устройство ДПТ

Основными частями электрической машины постоянного тока являются магниты и обмотка. К вспомогательным частям относятся корпус, сердечник, вал, коллектор, щёточный механизм. Все эти детали имеют своё назначение.

Сердечники подвижной и неподвижной частей изготавливаются не из целостной конструкции, а из листов электротехнической стали. Эта особенность строения даёт возможность практически устранить вихревые токи.

Бесщеточные двигатели постоянного тока

Прямой обязанностью коллектора является преобразование переменного тока, который вырабатывается в обмотке якоря, в постоянный. Коллектор — узел, характерный именно для машин постоянного тока. Но он одновременно и самый уязвимый, так как почти половина всех электромоторов выходит из строя в процессе работы именно по причине его поломки. Отсутствие коллектора в строении асинхронной или синхронной машины улучшает её надёжность. Это преимущество сохраняется как для трехфазных, так и для однофазных машин переменного тока.

Управление двигателем постоянного тока подразумевает изменение скорости его вращения, ведь основной его задачей является приведение в ход рабочих механизмов. Скорость вращения можно изменять тремя методами:

  • изменением напряжения, которое подводится;
  • изменением сопротивления в цепи якоря;
  • изменением магнитного потока в цепи возбуждения.

Итак, как работает бесколлекторный мотор?

Слишком далеко заходить и углубляться не буду, просто основы — магниты и обмотка создают движущую силу благодаря взаимодействию и созданию магнитного поля между ними. Это происходит благодаря подаче постоянного тока на определенную обмотку (у нас 3 фазы, т.е. 3 отдельных провода на обмотке), ток подается и прекращает подаваться на определенные обмотки в короткий промежуток времени, тысячные доли секунды, заставляя крутиться верхнюю часть с магнитами. Этим процессом полностью управляет ESC-регуляторы, это мозг моторов, он решает, когда подавать ток, а когда нет и с какой частотой.

Описание и принцип работы

Бесщеточный (бесколлекторный) двигатель постоянного тока очень похож на двигатель постоянного тока с постоянными магнитами, но не имеет щеток для замены или износа из-за искрения коммутатора.

Поэтому в роторе выделяется мало тепла, что увеличивает срок службы двигателей.

Конструкция бесщеточного двигателя устраняет необходимость в щетках благодаря более сложной схеме привода, в которой магнитное поле ротора является постоянным магнитом, который всегда синхронизирован с полем статора, что позволяет более точно контролировать скорость и крутящий момент.

Управление бесщеточными двигателями постоянного тока очень отличается от обычного щеточного двигателя постоянного тока тем, что этот тип двигателя включает в себя некоторые средства для определения углового положения роторов (или магнитных полюсов), необходимые для получения сигналов обратной связи, необходимых для управления переключением полупроводников. Появление процессорной техники и силовых транзисторов позволило конструкторам отказаться от узла механической коммутации и изменить роль ротора и статора в электромоторе постоянного тока.

Типы бесколлекторных электро-двигателей

Бесщеточные двигатели постоянного тока

Для правильного использования необходимо подключать их к различным источника электричества, однако в своей практике специалисты используют их как аналогичные устройства с единым аккумулятором.

В зависимости от схемы конструирования устройства, бесколлекторные двигатели разделяются на следующие типы:

  1. Оснащенные вращающимся валом внутри. Самый распространенный вариант, который часто применяется электрических устройствах с высоким количеством оборотов в минуту.
  2. Оснащенный внешним вращающимся валом. Данный тип часто применяют в устройствах, в которых нужно словить вращающийся момент.

Чтобы выбрать тот или иной тип двигателя необходимо наверняка знать, где он будет использоваться.

На данный момент производители изготавливают многочисленные варианты бесколлекторных двигателей и с датчиками Холла, и без них в том числе.

Специалисты утверждают, что хотя микрокомпоненты очень полезны для работы и повышают ее качества, а также могут выполнять несколько задач, например: питание витков жил, контроль положения по электродвижущей силе, все же иногда можно обойтись и без них.

Главные параметры БДТП:

  1. Длительность работы, от максимума до минимума.
  2. Верхняя граница рабочего тока.
  3. Верхняя граница рабочего электро-напряжения.
  4. Верхняя граница мощности устройства.
  5. Верхняя граница вращений. На заметку. Производитель может указать количество вращений на один вольт напряжения без нагрузки на ротор. Чтобы определить данный параметр необходимо указанный показатель умножить на показатель верхней границы рабочего электро-напряжения.
  6. Обратная сила витков жил. Коэффициент ПД будет выше, если данный показатель максимально низкий.
  7. Секунды, через которые ток в витках жил достигнем своего максимального значения верхней границы.

Особенности работы вентильных двигателей

Вентильные двигатели относятся к электрическим машинам специального назначения. Своим названием они обязаны применению в них устройств для выпрямления тока — вентилей. Достоинства вентильных электродвигателей:

  • изменение скорости вращения в широких пределах;
  • более высокий коэффициент полезного действия из-за уменьшения магнитных потерь вследствие малого магнитного сопротивления;
  • даже при пиковой нагрузке рабочие характеристики довольно неплохи.

Наряду с преимуществами, они имеют и некоторые недостатки. Но значение их не велико. Основными являются:

  • шумность;
  • управление требует определённой квалификации обслуживающего персонала;
  • высокая цена.

Области применения их различны: на производстве по добыче нефти, в химической промышленности и установках для бурения скважин.

Основная разница между вентильным и обычным двигателем заключается в конструкции. У вентильного нет некоторых привычных частей конструкции: коллектора и щёточного механизма. Вместо этого установлен коммутатор (инвертор), с помощью которого осуществляется управление вентильным двигателем. На инвертор поступает сигнал от датчика положения ротора.

Датчиками положения ротора могут быть трансформаторные или индуктивные бесконтактные элементы. Наиболее распространёнными являются датчики электродвижущей силы Холла. Такое устройство состоит из небольшой пластины полупроводникового материала. На ней находятся контактные звенья, к которым припаяны выводы, соединённые с источником питания. Выводы выходного сигнала также припаиваются к соответствующим звеньям пластины. Требованиями к датчикам положения ротора являются:

  • компактность;
  • минимальное значение мощности на входе;
  • большая кратность сигнала как максимального, так и минимального;
  • надёжная работа при любых условиях окружающей среды.

Коммутатор выполнен на полупроводниках. Его задача аналогична задаче щёточно-коллекторного узла в обычных двигателях и заключается в изменении направления тока. На сердечнике станины находится обмотка якоря, а на роторе — постоянный магнит. Такая конструкция устраняет возможность скольжения контакта на якоре.

У вентильного двигателя ток в фазах синусоидального вида. Возбуждение у него может быть двух видов:

  • электромагнитное;
  • магнитоэлектрическое.

При электромагнитном возбуждении обмотка возбуждения располагается на полюсах. Она подключается к сети благодаря контактным кольцам, размещённым на валу ротора. Таким образом, создание магнитного поля происходит электромагнитным путём.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: