Что такое электрический ток?

Один Ампер – много это, или мало

1 Ампер это 1 Кулон деленный на 1 секунду. Для большинства бытовых электроприборов это достаточно большая сила тока.

Например, через энергосберегающие лампы протекают токи 0,04 — 0,08 Ампера.

Большой плоский телевизор от электроосветительной сети потребляет ток 0,2 Ампера.

Лампа накаливания –примерно 0,5 Ампера.

Как видно, большинство электроприборов токи менее одного Ампера.

Поэтому, для тока часто применяют дольные единицы измерения:

миллиамперы, микроамперы, и наноамперы:

1мА (миллиампер)= 10⁻³ А

1мкА (микроампер) = 10⁻⁶ А

1нА (наноампер) = 10⁻9 А

Ток зарядки аккумулятора мобильного телефона может достигать 2 Ампер.

А через электрический обогреватель, или электрочайник, протекает ток силой до 10 Ампер.

Примечание: Ток силой всего 0,05 А может привести к летальному исходу. Будьте осторожны с электричеством!

В то же время, используют и токи, превышающие сотни Ампер. Например, на промышленных электростанциях.

Для таких токов применяют кратные единицы: килоампер, мегаампер.

1КА (килоампер)= 10³ А

1МА (мегаампер) = 10⁶ А

Получение электрического тока

Электрический ток не может возникнуть сам по себе. Что же нужно создать в проводнике, чтобы в нём возник и существовал ток?

При появлении электрического поля, возникнут и электрические силы. Они приведут в движение заряженные частицы. Именно так и возникает электрический ток.

Хорошо, вот создали мы электрическое поле, появился ток. Логично предположить, что если электрическое поле исчезнет, то исчезнет и ток.

Значит, для более длительного существования тока нам необходимо поддерживать постоянное существование электрического поля.

{"questions":,"explanations":,"answer":}}}]}

Как возникает электрический ток

Если взять два проводника, и один из них зарядить отрицательно (добавить ему электронов), а другой зарядить положительно (отобрав у него часть электронов), возникнет электрическое поле. Если соединить оба электрода проводником, поле заставит двигаться электроны в направлении, противоположном направлению вектора напряженности электрического поля, в соответствии с направлением вектора электрической силы. Отрицательно заряженные частицы будут двигаться от электрода, где они в избытке, к электроду, где они в недостатке.

Для возникновения движения электронов не обязательно сообщать второму электроду положительный заряд. Главное, чтобы отрицательный заряд первого был выше. Можно даже зарядить оба проводника отрицательно, но один проводник должен иметь заряд больше другого. В этом случае говорят о разности потенциалов, которая вызывает электрический ток.

По аналогии с водой – если соединить два сосуда, заполненные водой до разных уровней, возникнет поток воды. Его напор будет зависеть от разницы уровней.

Интересно, что хаотическое движение электронов под действием электрического поля в целом сохраняется, но общий вектор движения массы носителей заряда приобретает направленный характер. Если «хаотическая» составляющая движения имеет скорость несколько десятков или даже сотен километров в секунду, то направленная составляющая – несколько миллиметров в минуту. Но воздействие (когда электроны по длине проводника приходят в движение) распространяется со скоростью света, поэтому говорят, что электрический ток движется со скоростью 3*108 м/сек.

В рамках приведенного выше эксперимента ток в проводнике будет существовать недолго – до тех пор, пока в отрицательно заряженном проводнике не закончатся избыточные электроны, и их количество на обоих полюсах не уравновесится. Это время невелико – ничтожные доли секунды.

Перейти обратно к изначально отрицательно заряженному электроду и создать избыточный заряд носителям не даёт то же самое электрическое поле, которое двигало электроны от минуса к плюсу. Поэтому должна быть сторонняя сила, действующая против силы электрического поля и превосходящая его. По аналогии с водой, должен быть насос, закачивающий воду обратно на верхний уровень для создания непрерывного потока воды.

Как зависит сила тока в проводнике от сопротивления этого проводника

Различные действия тока, такие, как нагревание проводника, магнитные и химические действия, зависят от силы тока. Изменяя силу тока в цепи, можно регулировать эти действия. Но чтобы управлять током в цепи, надо знать, от чего зависит сила тока в ней. Мы знаем, что электрический ток в цепи — это упорядоченное движение заряженных частиц в электрическом поле. Чем сильнее действие электрического поля на эти частицы, тем, очевидно, и больше сила тока в цепи. Но действие поля характеризуется физической величиной — напряжением. Поэтому можно предположить, что сила тока зависит от напряжения. Установим, какова эта зависимость, на опыте.

На рисунке изображена электрическая цепь, состоящая из источника тока — аккумулятора, амперметра, спирали из никелиновой проволоки, ключа и параллельно присоединенного к спирали вольтметра. Замыкают цепь и отмечают показания приборов. Затем присоединяют к первому аккумулятору второй такой же аккумулятор и снова замыкают цепь. Напряжение на спирали при этом увеличится вдвое, и амперметр покажет вдвое большую силу тока. При трех аккумуляторах напряжение на спирали увеличивается втрое, во столько , же раз увеличивается сила тока. Таким образом, опыт показывает, что во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нем. Другими словами, сила тока в проводнике прямо пропорциональна напряжению на концах проводника. На рисунке показан график зависимости силы тока в проводнике от напряжения между концами этого проводника. На графике в условно выбранном масштабе по горизонтальной оси отложено напряжение в вольтах, а по вертикальной — сила тока в амперах.

Зависимость силы тока от напряжения мы уже установили. На основании опытов было показано, что сила тока в проводнике прямо пропорциональна напряжению на концах проводника

Следует обратить внимание, что при проведении опыта сопротивление проводника не менялось, одна и та же спираль служила участком цепи, на котором измеряли напряжение и силу тока. При проведении физических опытов, в которых определяют зависимость одной величины от другой, все остальные величины должны быть постоянными, если они будут изменяться, то установить зависимость будет сложнее

Поэтому, определяя зависимость силы тока от сопротивления, напряжение на концах проводника надо поддерживать постоянным. Чтобы ответить на вопрос, как зависит сила тока в цепи от сопротивления, обратимся к опыту. На рисунке изображена электрическая цепь, источником тока в которой является аккумулятор. В эту цепь по очереди включают проводники, обладающие различными сопротивлениями. Напряжение на концах проводника во время опыта поддерживается постоянным. За этим следят по показаниям вольтметра. Силу тока в цепи измеряют амперметром. Ниже в таблице приведены результаты опытов с тремя различными проводниками: В первом опыте сопротивление проводника 1 Ом и сила тока в цепи 2 А. Сопротивление второго проводника 2 Ом, т.е. в два раза больше, а сила тока в два раза меньше. И наконец, в третьем случае сопротивление цепи увеличилось в четыре раза и во столько же раз уменьшилась сила тока. Напомним, что напряжение на концах проводников во всех трех опытах было одинаковое, равное 2 В. Обобщая результаты опытов, приходим к выводу: сила тока в проводнике обратно пропорциональна сопротивлению проводника.

Зависимость силы тока от напряжения на концах участка цепи и сопротивления этого участка называется законом Ома по имени немецкого ученого Ома, открывшего этот закон в 1827 г. Закон Ома читается так: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению: I=U/R здесь I — сила тока в участке цепи, U — напряжение на этом участке, R — сопротивление участка.Закон Ома — один из основных физических законов. На рисунке зависимость силы тока от сопротивления проводника при одном и том же напряжении на его концах показана графически. На этом графике по горизонтальной оси в условно выбранном масштабе отложены сопротивления проводников в омах, по вертикальной — сила тока в амперах. Из формулы I=U/R — следует, что U=IR и R=U/I . Следовательно, зная силу тока и сопротивление, можно по закону Ома вычислить напряжение на участке цепи, а зная напряжение и силу тока — сопротивление участка. Сопротивление проводника можно определить по формуле R=U/I , однако надо понимать, что R — величина постоянная для данного проводника и не зависит ни от напряжения, ни от силы тока. Если напряжение на данном проводнике увеличится, например, в 3 раза, то во столько же раз увеличится и сила тока в нем, а отношение напряжения к силе тока не изменится.

Источник

Экскурс в историю

Итак, генератор на нашей электростанции преобразовывает механическую энергию в электрическую. А что дальше? В каком виде и как именно передавать энергию потребителю? Как избежать колоссальных потерь при передаче?

Поразительно, но подобная ситуация существовала на самом деле! В той же Российской Империи вплоть до начала 20 века была полная неразбериха. Рядом с каждым «крупным» потребителем электроэнергии (фабрика, подворье преуспевающего купца или гостиница для особ благородных кровей) строили отдельную электростанцию. Было множество конкурирующих фирм, предоставляющих услуги электрификации и, в последующем, своё электрическое оборудование заточенное только под свою сеть. Каждый поставщик электроэнергии задавал собственные параметры электросети – напряжение, частоту. Были даже электросети с постоянным током! Человек, купивший, к примеру, электролампочки в «Товариществе электрического освещения Лодыгин и Ко» смог бы использовать их лишь в электросети этой же компании. При подключении к сети «Дженерал электрик» эта лампочка тут же вышла бы из строя – напряжение сети этой фирмы было значительно выше необходимого, не говоря уже о других параметрах.

Лишь в 1913 году имперские инженеры решились передавать электроэнергию на большие расстояния по воздушным проводным линиям, избавив от необходимости постройки электростанций «у каждой розетки». В преддверии грядущей великой войны и нахлынувшего патриотизма власть задумалась об импортозамещении. Ну прям как в наше время, после кризиса 2014 года). Были финансово и юридически задавлены многие небольшие западные фирмы (кроме германских и французских), преференции и льготы давались лишь отечественным товариществам и предприятиям. В итоге, это привело к монополизму на рынке поставщика электроэнергии и, невольно, стандартизации параметров электрической сети.

Так как Берлин и Париж были уже электрифицированы единой энергосистемой с переменным напряжением сети 220 вольт, отечественные компании также приняли этот стандарт. Людям было удобнее использовать электрические приборы единого типа, не беспокоясь что их новомодный электрический пылесос сгорит на новом месте жительства из-за других параметров энергосети. Произошло полное вытеснение многих небольших фирм – никто уже не хотел пользоваться их услугами и их приборами, хотя они вынужденно подстроились под единый  стандарт электросети. Те самые 220 вольт переменного тока.

Строение атома

Думаю, вы все в курсе, что абсолютно все вещества состоят из маленьких крупинок – атомов. В свою очередь атом состоит из ядра и электронов. В каких-то веществах электронов может быть очень много, а в каких-то всего один (атом водорода).

Что такое электрический ток?

Давайте поиграем в ассоциации. Пусть ядро – это пастух, а электроны – овцы.

Что такое электрический ток?

Этих пастухов в веществах миллиарды, и у каждого пастуха есть свои овцы. В каком-то веществе на пастуха приходится одна овца, а в каких-то веществах даже по двести с лишним овец! Например, водород имеет лишь один электрон, тогда как металлы имеют множество электронов.

Если вы когда-нибудь пастушили коров, коз или овец, то, наверное, в курсе, что чем дальше от пастуха этот рогатый скот, тем больше он может наворотить дел, так как пастух не успевает усмотреть за всеми овцами. Некоторые овцы умудряются убегать из стада, бежать на пашню или в огороды и лакомится там различными вкусняшками.

Что такое электрический ток?

Электрические явления наблюдались давно, но объяснить их природу человек смог относительно недавно. Удар молнии казался чем-то неестественным, необъяснимым. Странным казалось потрескивание некоторых предметов при их трении. Искрящаяся в темноте расчёска, после расчёсывания шерсти животных (например, кошки) вызвала недоумение, но подогревала интерес к этому явлению.

Как всё начиналось

Ещё древним грекам было известно свойство янтаря, потёртого о шерсть, притягивать некоторые мелкие предметы. Кстати, от греческого названия янтаря –«электрон» пошло название «электричество».

Когда физики вплотную занялись исследованием электризации тел, они начали понимать природу подобных явлений. А первый кратковременный электрический ток, созданный человеком, появился при соединении проводником двух наэлектризованных предметов (см. рис. 1). В 1729 году англичане Грей и Уиллер открыли проводимость зарядов некоторыми материалами. Но определения электрического тока они не смогли дать, хотя и понимали, что заряды перемещаются от одного тела к другому по проводнику.

Что такое электрический ток?
Рис. 1. Опыт с заряженными телами

Об электрическом токе, как о физическом явлении заговорили лишь после того, как итальянец Вольта дал объяснение опытам Гальвани, а в 1794 году изобрёл первый в мире источник электричества – гальванический элемент (столб Вольта). Он обосновал упорядоченное перемещение заряженных частиц по замкнутой цепи.

Определение

В современной трактовке электрическим током называют направленное перемещение силами электрического поля заряженных частиц, Носителями зарядов металлических проводников являются электроны, а растворов кислот и солей — отрицательные и положительные ионы. Полупроводниковыми носителями зарядов являются электроны и «дырки».

Для того чтобы электрический ток существовал, необходимо всё время поддерживать электрическое поле. Должна существовать разница потенциалов, поддерживающая наличие первых двух условий. До тех пор, пока эти условия соблюдены, заряды будут упорядоченно перемещаться по участкам замкнутой электрической цепи. Эту задачу выполняют источники электричества.

Такие условия можно создать, например, с помощью электрофорной машины (рис. 2). Если два диска вращать в противоположных направлениях, то они будут заряжаться разноимёнными зарядами. На щётках, прилегающих к дискам, появится разница потенциалов. Соединив контакты проводником, мы заставим заряженные частицы двигаться упорядоченно. То есть электрофорная машина является источником электричества.

Что такое электрический ток?
Рисунок 2. Электрофорная машина

Источники тока

Первыми источниками электрической энергии, нашедшими практическое применение, были упомянутые выше гальванические элементы. Усовершенствованные гальванические элементы (народное название – батарейки) широко применяются по сей день. Они используются для питания пультов управления, электронных часов, детских игрушек и многих других гаджетов.

С изобретением генераторов переменных токов электричество приобрело второе дыхание. Началась эра электрификации городов, а позже и всех населённых пунктов. Электрическая энергия стала доступной для всех граждан развитых стран.

Сегодня человечество ищет возобновляемые источники электроэнергии. Солнечные панели, ветряные электростанции уже занимают свои ниши в энергосистемах многих стран, включая Россию.

Как измерить силу тока

Эту характеристику можно измерить с помощью амперметра. Прибор последовательно подключается к электрической сети (плюс к плюсу, минус к минусу). Чем ниже сопротивление амперметра, тем меньше его влияние на измерения, и тем они точнее. Если сопротивление амперметра стремится к нулю, он нейтрален и не влияет на показатели сети.

Работа амперметра основана на магнитном действии тока. Чем больше сила тока, проходящего по катушки, тем сильнее она взаимодействует с магнитом и тем больше угол поворота стрелки амперметра.

При измерении силы тока амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить.

У каждой клеммы прибора стоит свой знак: “+” или “-“.

Клемму со знаком “+” нужно соединить с проводом, идущим от положительного полюса источника тока, а клемму со знаком “-”  – с проводом, идущим от отрицательного полюса источника тока.

На электрических схемах амперметр изображают в виде кружка с буквой А.

Виды амперметров

По конструкции амперметры бывают:

  • аналоговые (со стрелочной измерительной головкой);
  • цифровые (с индикатором).

Амперметр – прибор для измерения силы тока в амперах.

По способу измерения:

  1. Магнитоэлектрические, в которых отклонение чувствительной стрелки и показатели зависят от силы взаимодействия полей постоянного магнита и поля электрического тока в алюминиевой рамке, и угла поворота последней.
  2. Электромагнитные, показатели которых меняются с подвижками железного сердечника под влиянием электромагнитного поля катушки.
  3. Электродинамические, в которых отклонение стрелки связано с притяжением или отклонением подвижной катушки относительно неподвижной, соединенных последовательно или параллельно.
  4. Тепловые, в которых при нагреве электрическим током происходит изменение длины металлической нити и положения связанной с нитью измерительной стрелки.
  5. Индукционные, в которых связанный со стрелкой металлический диск отклоняется под воздействием электромагнитного поля неподвижных катушек.
  6. Детекторные, в которых магнитоэлектрический прибор соединен с выпрямителем-детектором.
  7. Термоэлектрические, которые состоят из нагревателя и магнитоэлектрического измерительного механизма.
  8. Фотоэлектрические, в которых фотоэлектрический элемент преобразует световой поток в электрический.

Магнитоэлектрические приборы определяют только силу постоянного тока, индукционные и детекторные – переменного. Фотоэлектрические высокоточные приборы работают с постоянным током и током низкой и высокой частоты.

Остальные из перечисленных подходят для разных токов.

Приборы бывают многофункциональными, т.е. действующими в разных режимах. Например, мультиметр работает и как вольтметр, и как омметр, и как мегомметр (для высоких сопротивлений).

В всех современных измерительных приборах есть переключатель диапазона чувствительности.

Правила измерения

  1. Амперметр включается в электросеть последовательно, «в разрыв цепи».
  2. При включении прибора в сеть, необходимо соблюдать полярность, присоединяя «+» прибора к «+» источника тока, а «-» к «-».
  3. Тестируемая линия при подключении должна быть обесточена. Иначе прикасание щупами прибора к проводам или контактам может вызвать короткое замыкание.
  4. При высоких напряжениях в цепь переменного тока помимо амперметра включается трансформатор или шунт, в цепь постоянного – магнитный усилитель или шунт.
  5. Тип амперметра для измерений выбирают в соответствии с типом электрического прибора или линии. Также учитывают требуемую точность показателей.

Перед подключением необходимо подробно изучить инструкцию к амперметру.

4+

Качественные и количественные характеристики электрического тока

Основными понятиями, которые характеризуют электрический ток являются его сила, напряжение и сопротивление. Это наиболее распространенные параметры, о которых можно услышать. Имеет место и ряд других характеристик. Например, мощность тока, его плотность и т.д. Но о них по своей специфике, не часто можно услышать в быту.

Что такое электрический ток?

Что такое сила тока? Все просто, это количество носителей заряда которое пересекло сечение проводящего элемента за единицу времени. Сила тока имеет обозначение с системы СИ – «I», а единицей измерения установлен ампер. Формула для силы тока, из определения, будет следующей:

I=∆Q/∆t, где ∆Q – количество заряда, а ∆t – промежуток времени за который оно пересекает сечение проводника.

Что такое электрический ток?

Следующим понятием, которое характеризует электрический ток является напряжение. Оно по своей сути является работой электрического поля по перемещению заряда от одного электрода к другому. Поскольку потенциалы контактов источника электрического тока разные, то напряжение можно считать разностью этих потенциалов. Таким образом, напряжение является отношением работы к заряду. Формула выглядит следующим образом: U=Axq. Единицей измерения разности потенциалов в системе Си принят вольт. С работой непосредственно связано понятие мощности электрического тока, которая является производной от нее. Через напряжение и силу, мощность (Р) можно выразить следующим образом – Р=UxI.

Что такое электрический ток?

Взаимосвязь напряжения и силы тока была определена опытным путем Г. Омом. Правда для этого пришлось ввести такое понятие как сопротивление проводника. Эта величина не относиться к количественным характеристикам электрического тока, но позволяет определить необходимые параметры. По закону Ома взаимосвязь силы тока, напряжения и сопротивления видна из выражения I=U/R.

Каким бывает ток?

Ну, мы думаем, хватит распевать все преимущества электрической энергии, настало время поговорить о ней самой, что же она из себя представляет, и с чем ее едят. Во-первых, хотим уяснить, что все представление об электрической энергии делится на два вида: постоянный ток и переменный. У нас в быту в основном применяется переменный ток, и только в некоторых случаях – постоянный. Например, для зарядки мобильных телефонов, да и компьютеры тоже работают на постоянном токе, батарейки и различного типа аккумуляторы тоже являются источниками постоянного тока. Этим двум видам энергии есть научные определения.

Переменный ток

Начнем с переменного тока. Переменным электрическим током называется направленное упорядоченное движение электрически заряженных частиц, которое изменяется по величине и направлению в течении времени. Существуют несколько электрических величин характеризующих электрическую энергию. Все наверное знают такой термин как напряжение. Обозначается оно буквой U латинского алфавита и измеряется в вольтах (В). Вторая величина, называемая силой тока, обозначается буквой I и измеряется в амперах (А). Именно ток потребляется из сети, когда мы что-то подключаем к ней. Также существует такое понятие, как частота. Она присуща только переменному току, так как переменный ток изменяется в течении времени по закону синуса. Количество этого изменения в течение одной секунды и является частотой в нашей сети. Частота составляет 50 герц, то есть ток и напряжение в течении секунды изменяются по величине и направлению 50 раз. Замеры различных физических величин можно произвести при помощи электроизмерительных приборов

Постоянный ток

А вот постоянным током называют упорядоченное направленное движение электрически заряженных частиц, но, в отличие от переменного тока, не изменяющееся с течением времени. Этот род тока также характеризуется напряжением и силой тока. Но эти два рода тока в одних и тех же условиях ведут себя по разному, но есть закон, которому подчиняются и переменный и постоянный токи. Это всем давно известный закон Ома. Он заключается в том, что сила тока, протекающая в цепи прямо пропорциональна напряжению этой цепи и обратно пропорциональна сопротивлению этой цепи I=U/R. Появляется новая характеристика – сопротивление R, измеряется в омах (ОМ), оно указывают на сопротивление, которое оказывает цепь, то есть проводник протеканию по нему тока.

Первые упоминания об электричестве указываются в физике. Есть отдельная наука, которая занимается изучением этого вида энергии, также есть много ответвлений от этой науки, которые изучают поведение электричества в различных условиях. Мы уверены, что этот вид энергии за малое количество времени так глубоко внедрился в нашу жизнь, что мы еще очень долгое время будем зависимы от неё. Самыми надежными марками считаются отечественные

Связь между силой тока и скоростью движения зарядов

Рассмотрим металлический проводник. Мысленно выделим в нем два сечения площадью \(\large S \) на некотором расстоянии \(\large \Delta x\) одно от другого. Сечения располагаются поперечно проводнику.

В металлах электрический ток создается электронами. Обозначим \(\large e_{0}\) заряд каждого электрона.

Что такое электрический ток?Рис. 10. Свободные заряды в объеме проводника

Заряды в проводнике, под действием электрического поля напряженностью \(\large \vec{E} \) будут двигаться сонаправленно, от сечения к сечению.

При этом, они будут проходить путь \(\large \Delta x\) между двумя сечениями.

Если ток постоянный, то скорость движения зарядов изменяться не будет.

В таком случае, расстояние \(\large \Delta x\) и скорость \(\large v\) движения электронов будут связаны формулой равномерного движения.

\

\(\large \Delta x \left( \text{м}\right) \) – расстояние между двумя поперечными сечениями;

\(\large v \left( \frac{\text{м}}{c}\right) \) – скорость, с которой сонаправленно движутся заряды в проводнике; Эта скорость значительно меньше скорости теплового движения.

\(\large \Delta t \left( c \right) \) – интервал времени, за который пройдено расстояние \(\large \Delta x\) между двумя поперечными сечениями;

Выразим из этой формулы время движения:

\

Это выражение нам понадобится далее.

Сечения \(\large S \)  и расстояние между ними \(\large \Delta x\) образуют в проводнике цилиндрический объем:

\

\(\large V \left( \text{м}^{3}\right) \) – объем цилиндра;

В этом объеме содержится определенное количество электронов. Обозначим это количество: \(\large N \) штук.

Количество штук \(\large N \), расположенное в объеме \(\large V\), называют концентрацией:

\

\(\large n \left( \frac{\text{штук}}{\text{м}^{3}}\right) \) – концентрация зарядов в объеме;

Найдем общий заряд всех заряженных частиц, расположенных в объеме \(\large V\) между двумя поперечными сечениями:

\

Умножим правую часть уравнения на единицу, которую представим в виде дроби \(\displaystyle \frac{V}{V}\), в которой \(\large V\) – это рассматриваемый объем. Тогда полный заряд можно записать в таком виде:

\

Числитель V дроби и количество N частиц поменяем местами.

\

Подставим в эту формулу выражение для объема:

\

Дробь в правой части заменим символом «n» концентрации:

\

Средняя скорость совместного направленного движения зарядов \(\large v\).

Применим определение силы тока:

\

Подставим в это выражение формулу для общего заряда, прошедшего через сечение проводника:

\

Выражение для удобства можно переписать так:

\

Мы заранее выразили время \(\large \Delta t \):

\

Найдем для него обратную величину:

\

Подставим ее в формулу для тока:

\

Расстояние \(\Delta x\) находится в числителе и в знаменателе, оно сократится. Окончательно получим выражение для связи между силой тока и скоростью движения зарядов:

\

Теперь можно утверждать, что

  • чем больше зарядов помещаются в объеме,
  • чем быстрее они сонаправленно двигаются
  • и, чем толще проводник (чем больше площадь поперечного сечения),

тем больше ток.

Вывод

Когда по проводнику протекает электрический ток, он его нагревает, по этой причине необходимо соблюдать меры безопасности, работая с электрическими приборами и устройствами. Нельзя допускать перегрузки линии передачи энергии, она может нагреться, и возникнет пожар. Электроток всегда движется по пути наименьшего сопротивления.

В момент появления КЗ (короткого замыкания) ток в разы возрастает, происходит моментальное выделение огромного теплового значения, которое плавит металл. Электрический ток может вызвать ожоги на теле человека или животного, но применяется в реанимационных установках, для депрессивных решений и лечения заболеваний.

По правилам электробезопасности ощутимый человеком ток наступает с величины один миллиампер, а опасным для здоровья считается ток с 0,01 ампера, смертельной величиной определена сила тока в 0,1 ампера. Безопасное напряжение для человека — 12-24-32-42 вольта.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: