Электрический привод и его структура

Введение

При изучении
курса «Теория электропривода» студенты знакомятся с физическими процессами, протекающими
в блоках устройств электропривода, с теоретическими положениями, лежащими в основе
науки «Электропривод» и позволяющими проводить расчет, проектирование и решать практические
задачи эксплуатации систем электроприводов в различных отраслях промышленности.

Изучение курса «Теория электропривода»
в системе заочного обучения требует твердого знания таких предшествующих этому курсу
дисциплин, как «Высшая математика», «Теоретические основы электротехники», «Электрические
машины». Основная форма изучения материала – самостоятельная работа с учебной и
научнотехнической литературой. Выполнение и проверка контрольных работ позволяет
студенту и преподавателю проверить, как студент осваивает предмет и помочь ему в
этом.

Работать с учебниками, учебными пособиями
и технической литературой студент-заочник должен систематически в соответствии с
приведенной программой курса

Особое внимание рекомендуется обратить на вопросы,
сформированные после каждого раздела программы. При работе с литературой целесообразно
вести конспект, а ответы на вопросы формулировать не только устно, но и кратко записывать.

Подбор электродвигателя

Качество работы современного электропривода во многом определяется правильным выбором используемого электрического двигателя, что в свою очередь обеспечивает продолжительную надёжную работу электропривода и высокую эффективность технологических и производственных процессов в промышленности, на транспорте, в строительстве и других областях.

При выборе электрического двигателя для привода производственного механизма руководствуются следующими рекомендациями:

  • Исходя из технологических требований, производят выбор электрического двигателя по его техническим характеристикам (по роду тока, номинальным напряжению и мощности, частоте вращения, виду механической характеристики, продолжительности включения, перегрузочной способности, пусковым, регулировочным и тормозным свойствами др.), а также конструктивное исполнение двигателя по способу монтажа и крепления.
  • Исходя из экономических соображений, выбирают наиболее простой, экономичный и надёжный в эксплуатации двигатель, не требующий высоких эксплуатационных расходов и имеющий наименьшие габариты, массу и стоимость.
  • Исходя из условий окружающей среды, в которых будет работать двигатель, а также из требований безопасности работы во взрывоопасной среде, выбирают конструктивное исполнение двигателя по способу защиты.

Правильный выбор типа, исполнения и мощности электрического двигателя определяет не только безопасность, надёжность и экономичность работы и длительность срока службы двигателя, но и технико-экономические показатели всего электропривода в целом.

1.4. Электромеханические свойства двигателей

Обобщенная модель машин постоянного тока и вентильного двигателя.

Естественные и искусственные характеристики двигателя постоянного тока с независимым возбуждением. Каналы управления,
частотные характеристики двигателя постоянного тока независимого возбуждения. Электрическое
торможение.

Статические характеристики двигателя постоянного
тока последовательного возбуждения. Естественные и искусственные характеристики.
Динамическое торможение с самовозбуждением.

Особенности характеристик двигателя смешанного возбуждения.

Обобщенная модель асинхронной машины. Естественные и искусственные характеристики при питании от сети. Способы пуска
и торможения. Линеаризация характеристик. Передаточная функция.

Обобщенная модель синхронного двигателя. Угловая характеристика и ее линеаризация.
Пуск и торможение. Линеаризованная структура и передаточная функция. Контрольные
вопросы

1. 
Уравнения механической характеристики обобщенной модели машины постоянного тока.

2. 
Динамическая механическая характеристика двигателя постоянного тока независимого возбуждения.

3. 
Искусственные характеристики двигателей постоянного тока при:

–  введении добавочного сопротивления
в цепь якоря; – изменении напряжения;

–  изменении магнитного потока.

4. 
Реализация и характеристики двигателей постоянного тока в тормозных
режимах.

5. 
Уравнения механической характеристики модели асинхронного двигателя

Устройство электропривода

Стрелочный электропривод невзрезного типа состоит из:

  • электродвигателя переменного или постоянного тока мощностью 0,25 или 0,3 кВт;
  • редуктора со встроенной фрикционной муфтой;
  • главного вала с шиберной шестерней;
  • автопереключателя;
  • рабочего шибера;
  • контрольных линеек;
  • муфты сцепления.

Все узлы стрелочного электропривода устанавливаются в чугунном корпусе, который сверху закрывается стальной крышкой; крышка запирается на внутренний замок — защелку. Ось ротора (вал) электродвигателя стрелочного электропривода имеет выход с двух сторон: с одной стороны, она с помощью муфты сцепления соединяется с валом редуктора; а с другой стороны, конец (хвостовик) оси заканчивается квадратом 12 х 12 мм, на который надевается курбель, что дает возможность переводить стрелку вручную с его помощью. Напротив квадратного хвостовика оси электродвигателя, в торце корпуса электропривода имеется отверстие, в которое вставляется курбель. В нормальном состоянии это отверстие закрыто курбельной заслонкой, которая в закрытом состоянии фиксируется специальным винтом с квадратной головкой 12 х 12 мм. Фиксирующий винт отворачивается и заворачивается с помощью курбеля. Внутри корпуса электропривода установлен блокировочный контакт; он размыкается при опускании курбельной заслонки и отключает электродвигатель (разрывает рабочую цепь электропривода). Включить блокировочный контакт можно только после открытия крышки электропривода. Редуктор с фрикционной муфтой, главный вал с шиберной шестерней и рабочий шибер образуют механическую передачу стрелочного электропривода. Скошенные крайние зубья шиберной шестерни и рабочего шибера образуют внутреннее (кулачковое) запирающее устройство стрелочного электропривода. Автопереключатель представляет собой электромеханическое устройство, предназначенное для контроля окончания перевода стрелки с проверкой положения прижатого и отведенного остряков, коммутации рабочей и контрольной цепей. Автопереключатель имеет четыре группы контактов: две крайние группы коммутируют рабочую цепь, две средние группы — контрольную цепь.

Схема стрелочного электропривода СП-10 снаружи

Электрический привод и его структура
Схема стрелочного электропривода СП-10 внутри

Общепромышленный, взрывозащищенный:

Электроприводы используются для автоматизации арматуры во всех сферах инженерных систем, начиная от простого водоснабжения и заканчивая объектами добывающей, металлургической, нефтехимической промышленности и даже атомной энергетики. В каждой сфере промышленности существуют определенные требования к технике безопасности. В данном контексте принято говорить об исполнении электропривода

. По своему исполнению электроприводы делятся на общепромышленные, взрывозащищенные, а так же электроприводы для АЭС, для шахт, и электроприводы морского исполнения.Общепромышленные электроприводы — наиболее распространенные и часто используемые приводы для автоматизации взрывобезопасных промышленных объектов. В конструкции общепромышленных приводов предусмотрена пылевлагозащита определенного класса, защита от коррозии, допустимый перепад температур окружающей среды. Чем сложнее условия эксплуатации, тем сложнее конструкция привода и дороже его цена. Общепромышленные приводы разработаны с тем учетом, чтобы не перегружать конструкцию излишними качествами там, где это не нужно, и обеспечивать исправную работу в течении всего срока эксплуатации. Основные сферы применения — горячее и холодное водоснабжение, водоотведение, паровые сети, системы пожаротушения, кондиционирования и вентиляции, трубопроводы пищевой и химической промышлености, технические трубопроводы любых негорючих материалов — жидких, твердых (абразивных) и газообразных. К эксплуатации во взрывоопасных зонах предъявляются особые требования, которые должны быть соблюдены.

Электрический привод и его структура

Взрывозащищенные электроприводы на порядок сложнее общепромышленных. Взрывозащита — это меры, которые обеспечивают безопасность оборудования для работы во взрывоопасных средах, процессов его производства, эксплуатации, хранения, перевозки, реализации, а также утилизации. К техническим решениям относят применение оборудования (в первую очередь электрооборудования), не способного вызвать взрыв. Взрывозащищенные электроприводы обозначаются маркировкой Ex. По области применения оборудование делится на следующие группы:

  • I — оборудование, предназначенное для применения в подземных выработках шахт, рудников, опасных в отношении рудничного газа и (или) горючей пыли, а также в тех частях их наземных строений, в которых существует опасность присутствия рудничного газа и (или) горючей пыли (категория смеси — I );
  • II — оборудование, предназначенное для применения во взрывоопасных зонах помещений и наружных установок (категория смеси — II по газу);
  • III — оборудование, предназначенное для применения во взрывоопасных пылевых средах (категория смеси — II по пыли).
Популярные статьи  Нюансы организации освещения на мансарде

Электроприводы в морском исполнении устанавливаются в прибережных зонах, верфях, на нефтедобывающих платформах, и даже на судах и подводных лодках. На морских судах электроприводы используются для дренажных, топливных, балластных, спринклерных систем и систем пожаротушения. Морские суда характеризуются ограниченностью пространства, что налагает более жесткие требования к массогабаритным характеристикам установленного на них оборудования. Приводы морского исполнения должны отвечать всем требованиям по устойчивости к ударной и вибрационной нагрузкам для морских судов и подводных лодок. Все элементы корпуса делаются из бронзы, все внешние винты – из высокопрочной нержавеющей стали. Это обеспечивает устойчивость к воздействию морской воды в течение долгого времени.

1.2. Механика электропривода

Приведение моментов, сил и жесткостей к валу электродвигателя. Учет потерь в передачах. Расчетные схемы двух- и одномассовых
механических частей электропривода. Типовые нагрузки механической части электропривода.

Уравнение движения электропривода. Уравнение движения при нелинейных механических связях. Режимы работы электропривода.

Механическая часть как объект управления. Структурные схемы, передаточные функции, частотные характеристики.

Механические переходные процессы в одно- и двухмассовой системах электропривода.

Контрольные вопросы

1. 
Какие законы лежат в основе приведения моментов инерции и масс, жесткости механических связей?

2. 
В чем отличие активных и реактивных, консервативных и диссипативных моментов?

3. 
Чем характеризуются статические и динамические режимы работы электропривода?

4. 
В каких режимах работает электропривод с нелинейными механическими связями?

5. 
Как влияют на динамические характеристики механической части соотношение
моментов инерции двигателя и исполнительного механизма, жесткость механической связи?

6. 
Отличие механических переходных процессов с постоянными моментами в одномассовой схеме при активном и при реактивном
статических моментах.

7. 
Законы движения масс при переходном процессе в двухмассовой механической части.

Пылевлагозащита (степень защиты оболочки):

Класс пылевлагозащиты IP

— система классификации степеней защиты оболочки электрооборудования от проникновения твёрдых предметов и воды в соответствии с международным стандартом IEC 60529 (DIN 40050, ГОСТ 14254-96). Маркировка степени защиты оболочки электрооборудования осуществляется при помощи международного знака защиты (IP) и двух цифр, первая из которых означаетзащиту от попадания твёрдых предметов , вторая —защиту от проникновения воды . Но классификация по IP не дает информации о взрывоопасности или о влиянии условий окружающей среды (повышенная влажность, температура, коррозийность, взаимодействие с едкими газами/жидкостями и прочее). Если первая цифра равна 0, то оболочка не обеспечивает защиту ни от доступа к опасным частям, ни от проникновения внешних твёрдых предметов. При цифре6 оболочка обеспечивает полную защиту от пыли (герметичность).

  • 1 — защита от предметов диаметром более 50мм, нет защиты от сознательного контакта;
  • 2 — защита от предметов диаметром 12,5мм и более — например от пальцев;
  • 3 — защита от предметов диаметром 2,5мм и более — от кабелей, инструментов;
  • 4 — защита от предметов диаметром от 1мм — большинство проводов, болтов и т.п.;
  • 5 — пылезащищенность, некоторое количество пыли может проникать внутрь, однако это не нарушает работу устройства; полная защита от контакта;
  • 6 — полная пыленепроницаемость.

Аналогично, если вторая цифра равна 0, то оболочка не обеспечивает защиту от вредного воздействия воды. Цифра 8 указывает на то, что оболочка обеспечивает защиту от воздействия при длительном погружении в воду.

  • 1 — защита от вертикально капающей воды;
  • 2 — защита от воды, которая льётся вертикально или под углом до 15° к вертикали;
  • 3 — защита от воды, которая льётся вертикально или под углом до 60° к вертикали;
  • 4 — защита от брызг, падающих в любом направлении;
  • 5 — защита от водяных струй с любого направления;
  • 6 — защита от морских волн или сильных водяных струй;
  • 7 — защита от кратковременного погружения на глубину до 1 метра;
  • 8 — полная водонепроницаемость. Устройство может работать в погружённом режиме;
  • 9 — полная водонепроницаемость под давлением. Устройство может работать в погружённом режиме при высоком давлении жидкости.

Что такое электропривод, и зачем он нужен?

Электропривод в первую очередь необходим для управления скоростью, крутящим моментом и направлением движущихся объектов. Электроприводы в основном применяются для управления скоростью или движением различных объектов, таких как станки, транспорт, роботы, вентиляторы и т. д. Если рассматривать приводы с точки зрения классификации по скорости, то электроприводы могут быть постоянного или переменного типа. Приводы с постоянной скоростью являются простейшими электроприводами, и они неэффективны, когда необходимо изменение скорости; в таких случаях приводы с переменной скоростью используются для управления нагрузками при любом значении из широкого диапазона скоростей.

Приводы с регулируемой скоростью необходимы для точного и непрерывного контроля скорости, положения или крутящего момента различных нагрузок. Помимо этих, безусловно, положительных преимуществ существует еще множество причин использовать устройства с регулируемой скоростью. К таким причинам можно отнести следующее:

  • С целью достижения высокого коэффициента полезного действии (КПД): электроприводы позволяют задействовать широкий диапазон мощности от мВт до МВт для различных значений скорости. Вследствие этого общая стоимость эксплуатации системы может быть уменьшена
  • С целью повышения точности остановки или скорости реверсирования работы двигателя
  • С целью управления пусковым током
  • С целью обеспечения защиты
  • С целью организации расширенного упраления с изменением параметров, таких как температура, давление и т. д.

Прогресс в области мощных электронных устройств, микропроцессоров и цифровой электроники привел к созданию современных электроприводов, которые являются более компактными, эффективными, дешевыми и имеют более высокий КПД, чем громоздкая, негибкая и дорогая традиционная электроприводная система, в которой используется многомашинная структура для организации переменной скорости. Простейшая структурная схема электропривода приведена ниже.

Электрический привод и его структура

На этой блок-схеме электропривода изображены электрический двигатель, силовой электронный преобразователь, контроллер (это может быть ПИД-регулятор), датчики и фактическая нагрузка. Электродвигатель является основным компонентом электропривода, который преобразует электрическую энергию в механическую энергию, которая в свою очередь управляет нагрузкой. Двигателем может быть электромотор постоянного тока или электромотор переменного тока, и во многом это зависит от типа нагрузки. О чем мы поговорим в следующих статьях.

digitrode.ru

Классификация электроприводов

По количеству и связи исполнительных, рабочих органов:

  • Индивидуальный, в котором рабочий исполнительный орган приводится в движение одним самостоятельным двигателем, приводом.
  • Групповой, в котором один двигатель приводит в действие исполнительные органы РМ или несколько органов одной РМ.
  • Взаимосвязанный, в котором два или несколько ЭМП или ЭП электрически или механически связаны между собой с целью поддержания заданного соотношения или равенства скоростей, или нагрузок, или положения исполнительных органов РМ.
  • Многодвигательный, в котором взаимосвязанные ЭП, ЭМП обеспечивают работу сложного механизма или работу на общий вал.
  • Электрический вал, взаимосвязанный ЭП, в котором для постоянства скоростей РМ, не имеющих механических связей, используется электрическая связь двух или нескольких ЭМП.
Популярные статьи  Что делать и куда звонить, если отключили свет дома?

По типу управления и задаче управления:

  • Автоматизированный ЭП, управляемый путём автоматического регулирования параметров и величин.
  • Программно-управляемый ЭП, функционирующий через посредство специализированной управляющей вычислительной машины в соответствии с заданной программой.
  • Следящий ЭП, автоматически отрабатывающий перемещение исполнительного органа РМ с заданной точностью в соответствии с произвольно меняющимся сигналом управления.
  • Позиционный ЭП, автоматически регулирующий положение исполнительного органа РМ.
  • Адаптивный ЭП, автоматически избирающий структуру или параметры устройства управления с целью установления оптимального режима работы.

По характеру движения:

  • ЭП с вращательным движением.
  • Линейный ЭП с линейными двигателями.
  • Дискретный ЭП с ЭМП, подвижные части которого в установившемся режиме находятся в состоянии дискретного движения.

По наличию и характеру передаточного устройства:

  • Редукторный ЭП с редуктором или мультипликатором.
  • Электрогидравлический с передаточным гидравлическим устройством.
  • Магнитогидродинамический ЭП с преобразованием электрической энергии в энергию движения токопроводящей жидкости.

По роду тока:

  • Переменного тока.
  • Постоянного тока.

По степени важности выполняемых операций:

  • Главный ЭП, обеспечивающий главное движение или главную операцию (в многодвигательных ЭП).
  • Вспомогательный ЭП.
  • Привод передач.

Схемы электроприводов

В промышленности широко применяются электроприводы. Их основным предназначением является преобразование энергии. Устройства представляют собой автоматизированную электромеханическую систему.

Электромеханическая система электроприводов в свою очередь включает три вида узлов:

  • электрические;
  • механические;
  • электронные.

Обычно данная система состоит из двигателя, преобразователя и автоматического управления. Электроприводы способствуют приведению в движение практически всех механизмов, которые имеются на заводах и фабриках, а также транспортных средств и бытовой техники.

На сегодняшний день практически все аппараты, приборы и агрегаты оборудованы данным устройством.

Сюда можно отнести:

  • сплит-системы и холодильное оборудование;
  • трамваи и троллейбусы;
  • поезда и самолеты;
  • автомобили;
  • бытовая техника;
  • принтеры и сканеры;
  • часы.

Схема электропривода, который имеет промышленный механизм, представлена на рисунке ниже.

При этом данные устройства могут в значительной степени отличаться по своим габаритам. Электроприводы выполняются от нескольких миллиметров до гигантских размеров с «двухэтажку», которые двигают мощный прокатный стан.

Подобные системы отличаются рядом особенностей.

Первая заключается в том, что скорость электроприводов регулируется посредством применения полупроводниковых преобразователей энергии.

Второй особенностью является использование микропроцессорных контроллеров. Они непосредственно позволяют решать задачу управления данными устройствами. Общая структура прибора выглядит следующим образом.

Области применения электродвигателей

На сегодняшний день электроприводы — это главные потребители энергетики. Практически половина всей потребляемой энергии в мире приходится на самые разнообразные модели электромоторов. Электроприводы крайне востребованы во всех сферах нашей жизни, в промышленных отраслях и бытовом использовании. Давайте рассмотрим, где применяются электромоторы

  • промышленная отрасльшлифовальное, металлообрабатывающее, деревообрабатывающее насосное, конвейерное, компрессорное оборудование, вентиляторы, производство автомобилей и другой техники;
  • сфера строительства строительствоустройства выступают компонентами лебедок, талей, кранов и прочего подъемно—транспортного оборудования, используются в лифтовых системах, узлах отопления, вентилирования и кондиционирования воздуха (функционируют за счет крыльчатки электрического двигателя);
  • бытовая техникахолодильники, пылесосы, комплектующие для ПК и ноутбуков (HDD—диски, кулеры), системы климат—контроля и кондиционеры, стиральные машины, миксеры и т.д.

Как видим, эксплуатация электроприводов распространена повсеместно.

Особенности систем управления

Системы управления электроприводами являются неотъемлемой частью механизма.

Системы управления выполняют определенные функции в зависимости от назначения устройства:

  • пуск и выключение;
  • регулировка скорости;
  • управление положением механизма или машины;
  • контроль и изменение характеристик устройства в соответствии с заданными параметрами;
  • защита, блокировка оборудования или сигнализация.

В зависимости от типа управления все системы делятся на три группы:

  • ручные. Оператор самостоятельно следит за рабочими процессами, непосредственно воздействуя на механизмы электропривода. Недостаток очевиден – это низкая точность, наличие человеческого фактора и медлительность системы. Этот тип управления используется редко, для выполнения базовых операций и контроля за одним процессом;
  • полуавтоматические. В данном случае присутствие оператора необходимо, но его участие в процессе остается минимальным – он лишь воздействует на автоматические системы, причем контроль может проводиться дистанционно. Главное преимущество – повышается быстродействие и точность обработки данных и регулировки процессами;
  • автоматические. Эти системы управления не допускают участия оператора – все процессы контроля и регулировки электроприводами осуществляются в автономном режиме согласно заложенной программе и с учетом внештатных ситуаций.

Виды и особенности электродвигателей

Наш материал будет посвящен электроприводу — одному из самых старых устройств, разработка которого началась еще в середине XIX столетия. Впрочем, несмотря на прошедшие века, эти устройства вполне комфортно чувствуют себя и в первой четверти 21 века. Электрические двигатели популярны, востребованы, а их мощностные спецификации совершенствуются. Мы не будем рассказывать о том, как сделать электродвигатель, но давайте узнаем, как устроены электромоторы, какими они бывают и как их подобрать, по каким техническим спецификациям их классифицируют и где они нашли применение.

Устройство и принцип работы электродвигателя

Электрический двигатель — изделие, которое преобразует электроэнергию в механическую. Достигается это при помощи работы внутренних механизмов электромотора. Необходимо отметить, что движок — это главная деталь привода.

Есть определенные рабочие режимы электрического привода, когда мотор выполняет функцию преобразователя электроэнергии (другими словами — выступает в роли электрогенератора).

В зависимости от спецификаций механики движения, выделяют различные виды электродвигателей. Среди них

  • вращающиеся;
  • линейные и другие типы.

Подробно вопросы классификации мы рассмотрим в соответствующем разделе, но внесем одну ясность — зачастую под понятием “электрический двигатель” рассматриваются именно вращающиеся модели, получившие наибольшее распространение и, как следствие, применения в самых разных сферах, отраслях.

схема электродвигателя

По виду создаваемого механического движения модели бывают вращающиеся, линейные и т.д. Под электроприводами очень часто подразумевают именно вращающиеся, так как они получили самое большое распространение и, как следствие, применение, чем другие виды двигателей.

Из чего состоит электродвигатель

Что понять, как работает электродвигатель мы должны разобраться, как устроен электродвигатель, из чего он состоит, узнать плюсы и минусы изделий. Главными деталями (а мы рассматриваем именно вращающийся электромотор), обеспечивающими плавный пуск двигателя, являются

  • статор — неподвижный компонент;
  • ротор — механизм, отвечающий за вращательные движения.

Эти основные элементы присущи всем моделям вне зависимости от их типа.

Чаще всего компании—производители помещают ротор внутри статора, для достижения оптимального КПД электродвигателя. Если же движок имеет противоположную состав конструкции, подразумевающей расположение подвижного компонента снаружи, то такие изделия являются асинхронными или обращенными электродвигателями с короткозамкнутым ротором.

схема электропривода

Как работает электродвигатель

Обратимся к физике и рассмотрим принцип функционирования электропривода. Так, по закону Ампера мы имеем проводник (I). Он находится в магнитном поле, соответственно, на него оказывает действие сила (F). В том случае, если проводник (I) согнут в специальную рамку, в магнитном поле наблюдается следующая картинана обе стороны рамки, расположенные под углом в 90 градусов, оказывают воздействие разнонаправленные силы (F), которые и создают вращательные движения.

Популярные статьи  Магнитное поле и его параметры, магнитные цепи

Для обеспечения постоянного момента вращения на якорях движков устанавливают специальные витки. Что касается магнитного поля, то оно достигается за счет использование магнитов (также могут применяться электромагниты — провода, которыми обматывают сердечник) из—за чего энергия, воздействующая на рамки проводника, индуцирует электричество, что способствует высокому КПД движка.

схема электромотора

Приводы и исполнительные механизмы

Электрический привод арматуры — это устройство, являющееся видом электрических приводов, служащее для механизации и автоматизации трубопроводной арматуры, и широко применяющееся во всех отраслях промышленности, играя важнейшую роль практически во всех технологических процессах. Чаще всего электропривода используются для дистанционного управления арматурой, еë открытия и закрытия, а также для определения положения арматуры. Кроме электрических приводов, существуют пневматические, гидравлические и электромагнитные арматурные привода.

Механизмы исполнительные электрические однооборотные либо прямоходные  предназначены для перемещения регулирующих органов в системах автоматического регулирования технологическими процессами в соответствии с командными сигналами автоматических регулирующих и управляющих устройств.

Принцип работы механизмов заключается в преобразовании электрического сигнала поступающего от регулирующего или управляющего устройства во вращательное перемещение выходного вала, либо линейное перемещение выходного штока.

Многооборотные электроприводы для задвижек и клапанов

Электроприводы для задвижек, клапанов и т.п.

Многооборотные электрические исполнительные механизм и приводы (электроприводы) предназначены для передачи крутящего момента арматуре (как правило это задвижки и клапаны) при ее повороте на один оборот и более. Механизмы и приводы  предназначены для приведения в действие запорно-регулирующей арматуры в системах автоматического регулирования технологическими процессами, в соответствии с командными сигналами регулирующих и управляющих устройств.

Однооборотные / четвертьоборотные электроприводы для затворов, кранов, заслонок

Электроприводы для затворов дисковых, кранов шаровых, поворотных заслок и т.п.

Однооборотные (или неполноповоротные) электрические исполнительные механизмы и приводы предназначены для передачи крутящего момента арматуре (как правило это затворы,краны,поворотные заслонки и т.п.) при ее повороте на один оборот или менее (от 0 до 360°).

Прямоходные электроприводы для клапанов, заслонок

Электроприводы для клапанов, различных заслонок и т.п.

Прямоходные электроприводы предназначены для приведения в действие запорно-регулирующей арматуры (как правило это клапаны, заслонки). Они передают усилие  штоку арматуры при его поступательном перемещении и применяются с в системах автоматического регулирования технологическими процессами в соответствии  с командными сигналами регулирующих и управляющих устройств.

Все типы электрических исполнительных механизмов:

  • однооборотные рычажные исполнительные механизмы МЭО
  • однооборотные фланцевые исполнительные механизмы МЭОФ
  • а так же, НОВИНКА ! Механизмы исполнительные однооборотные PrimAR-M PrimAR-MF
  • линейные или прямоходные исполнительные механизмы (электроприводы МЭП)
  • новая линейка исполнительных механизмов МЭП-С
  • приводы ПВМ, МЭО в атомномном исполнении, механизмы иностранных производителей и мн.др.

Электроприводы для воздушных заслонок, воздушных клапанов и пр.

Приводы пневмотические для трубопроводной арматуры: — многооборотные пневмоприводы (задвижки, клапаны) — неполноповоротные или однооборотные пневмоприводы (затворы дисковые, краны шаровые) — прямоходные пневмоприводы (клапаны, заслонки)

Редукторы ручные для трубопроводной арматуры

Приборы контроля и регулирования технологических процессов

Электрогидравлические приводы

Широкое распространение в станках и промышленных работах с ЧПУ получили электрогидравлические приводы с управлением от задающих электрических (шаговых) двигателей. Такие двигатели позволяют преобразовывать дискретные электрические сигналы управления, поступающие от электронной системы с ЧПУ, в дискретный поворот выходного вала с определенным углом поворота на каждый импульс, который называется угловым шагом.

Шаговый двигатель обладает высоким быстродействием и развивает на выходном валу крутящий момент, достаточный для перемещения золотника дросселируещего распределителя. Угловой шаг шагового двигателя (типа ШД5-Д1М) составляет 1,5; крутящий момент 40 Н*см; накопленная частота подачи импульсов 8000 имп/с.

Схема электрогидравлического шагового привода вращательного движения (типа Э32Г18-2):

Электрические управляющие импульсы поступают на шаговый двигатель.

Вращение его выходного вала передается на гайку 1, запрессованную от осевого смещения. В зависимости от направления вращения гайки винт 2, связанный с золотником дросселирующего распределителя РДР, перемещается влево или вправо и сдвигает золотник относительно среднего положения. Масло под давлением направляется в рабочие полости гидромотора (М) так, что направление вращения выходного вала гидромотора совпадает с направлением вращения вала ШД.

Винт 2 своим вторым концом связан с валом гидромотора (М) через шлицевую муфту 3. Поэтому при вращении этого вала винт вворачивается в гайку или выворачивается из нее, перемещаясь вдоль оси по направлению к нейтральному положению РДР.

Если вал ШД повернется на какой-либо угол и остановится, то вал гидромотора повернется на такой же угол. Если же вал ШД будет вращаться с постоянной угловой скоростью, то вал гидромотора будет вращаться с такой же частотой, но с некоторым отставанием по углу (рассогласование по положению). После остановки вала ШД, вал гидромотора (М) «догонит» его и остановится в том же угловом положении с точностью менее одного импульса.

Крутящий момент на выходном валу гидромотора в 100 и более раз превышает момент на валу ШД, поэтому элементы привода, представляют собой гидравлический усилитель крутящих моментов.

Предыдущие материалы: Следующие материалы:
  • Линейный электрогидравлический (шаговый) привод
  • Гидроприводы протяжных станков
  • Гидравлические приводы подач при переменных нагрузках
  • Объемное и объемно-дроссельное регулирование скорости
  • Клапаны усиления зажима

Электрический привод

Электрический привод (сокращённо — электропривод, ЭП) — управляемая электромеханическая система, предназначенная для преобразования электрической энергии в механическую и обратно и управления этим процессом.

Современный электропривод — совокупность множества электромашин, аппаратов и систем управления ими. Он является основным потребителем электрической энергии (до 60 %) и главным источником механической энергии в промышленности.

В ГОСТ Р 50369-92 электропривод определён как электромеханическая система, состоящая из преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением в целях осуществления технологического процесса.

Как видно из определения, исполнительный орган в состав привода не входит. Однако авторы авторитетных учебников включают исполнительный орган в состав электропривода. Это противоречие объясняется тем, что при проектировании электропривода необходимо учитывать величину и характер изменения механической нагрузки на валу электродвигателя, которые определяются параметрами исполнительного органа. При невозможности реализации прямого привода электродвигатель приводит исполнительный орган в движение через кинематическую передачу. КПД, передаточное число и пульсации, вносимые кинематической передачей, также учитываются при проектировании электропривода.

Электропривод

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: