Электростатическая защита

Защита при проектировании устройств и оборудования

Первый принцип заключается в разработке электронных устройств и сборок, которые должны быть максимально устойчивы к воздействию электростатического разряда. Для соблюдения этого принципа, необходимо максимальное использование менее чувствительных к статическому электричеству устройств или обеспечение соответствующей защиты выводов на устройствах, платах, сборках и оборудовании. Для инженеров и разработчиков парадокс заключается в том, что для развития технологии требуются устройства с меньшими габаритными размерами, печатные платы с большей плотностью монтажа и сложными геометрическими формами, которые часто более восприимчивы к электростатическому разряду. Современными стандартами предполагается, что у разработчиков будет меньше возможностей для обеспечения защиты, которые были доступны в прошлом. Следовательно, целевые уровни ESD снижены до 1000 В для устойчивости модели человеческого тела и до 250 В для устойчивости по сравнению с моделью заряженного устройства с тенденцией к дальнейшему снижению этих значений. Эти целевые значения считаются реалистичными и безопасными для производства и применения современных изделий с использованием основных методов контроля ESD. При работе с изделиями с более низкими целевыми уровнями ESD, могут потребоваться специальные средства управления, выходящие за рамки описанных здесь принципов.

Как снять статическое электричество

Учитывая негативные факторы данного явления, методы защиты от него волнуют умы многих ученых мирового сообщества.

С человека

Перед тем, как снять статическое электричество с человека желательно выявить причины его возникновения. Устранение данного эффекта сводится к банальному «заземлению». Для этого достаточно:

  • прикоснуться к батарее отопления;
  • на несколько секунд прижать ладони к земле;
  • взять в руки металлический предмет и притронуться к чему-либо массивному, сделанному из токопроводящего материала.

Полностью избежать данного явления практически никогда не удается, но уменьшить вероятность его возникновения можно, если:

  • исключить трение, контакт с подвижными телами, изолированными от земли и не имеющими выхода для сброса накопленного заряда;
  • избегать нахождения в электрическом поле (возле работающих электроустановок, трансформаторов, линий ЛЭП);
  • перейти на одежду и постельное белье из натуральных тканей;
  • при касании с синтетическими предметами пользоваться перчатками из хлопчатобумажной ткани;
  • отказаться от обуви на резиновой или другой, электроизолирующей подошве.

С волос

Не менее важным для людей становится вопрос, как снять статическое электричество с волос. Наэлектризованность является настоящим бедствием для тех, у кого локоны склонны к сухости. Снять заряд и сделать прическу поможет:

  1. Плоская расческа из металла, дерева или, имеющая щетину из натуральных материалов. Синтетики способствуют накапливанию электрического заряда.
  2. Мытье головы не чаще чем раз в два дня. Слишком чистые волосы лишены сальной защиты и более подвержены сухости, соответственно – наэлектризованности.
  3. Кондиционер и сыворотка с эффектом увлажнения. Даже небольшое количество средства позволит сохранить в волосах влагу и избежать статического электричества.
  4. Крем-антистатик.

При сушке обработке волос феном не стоит доводить их до полной сухости

С особой осторожностью нужно пользоваться лаками. Входящие в них полимеры могут притягивать электричество. Наэлектризованность волос легко устраняется с помощью небольшого количества воды или антистатической салфетки

Наэлектризованность волос легко устраняется с помощью небольшого количества воды или антистатической салфетки.

С одежды

Электрический заряд на предметах гардероба становится причиной дискомфорта и способствует притягиванию пыли. Избавиться от статического электричества на одежде можно:

  • используя металлические плечики;
  • вставляя в вещи английские булавки;
  • проведя по изделью смоченной в воде ладонью;
  • распыляя антистатики и специальные кондиционеры.

С предметов домашнего обихода

Наэлектризованность домашней утвари вызывает массу неудобств. Основными из них являются внезапные разряды и загрязнение интерьера. До того, как избавиться от статического электричества в квартире, необходимо присмотреться к правилам расстановки электробытовых приборов и обеспечить их заземление. Скопление электроники в одном месте способствует возникновению мощных электрических полей.

Главным сторонником накопления зарядов является сухой воздух и запыленность квартиры. Побороть это проявление помогает постоянные влажные уборки и принудительное поднятие влажности с помощью намоченных полотенец, емкостей с водой или специальных приборов.

Уменьшить наэлектризованность помогает комнатная декоративная растительность. Помимо снятия заряда она очищает воздух от токсинов и тяжелых металлов.

При проведении уборки квартиры, особое внимание следует уделять предметам, которые часто перемещаются и создают эффект трения. Чтобы уменьшить вероятность накопления электрических зарядов в квартире, следует компоновать интерьер из вещей, содержащих меньше синтетических материалов. Чтобы уменьшить вероятность накопления электрических зарядов в квартире, следует компоновать интерьер из вещей, содержащих меньше синтетических материалов

Чтобы уменьшить вероятность накопления электрических зарядов в квартире, следует компоновать интерьер из вещей, содержащих меньше синтетических материалов.

Уменьшение интенсивности зарядов

Статическое электричество и защита от него

Мероприятия направлены на обеспечение безопасности технологических процессов:

  • согласно действующим ГОСТам на производстве обеспечивается контроль скорости перемещаемого по трубам сырья;
  • перед переработкой рабочие газы и жидкости должны быть очищены от примесей и посторонних взвесей;
  • в процессах переработки и транспортировки недопустимо разбрызгивание жидкостей и газов;
  • на производстве, где невозможно организовать естественное стекание статических зарядов, применяют закрытые транспортные системы (при пневмотранспортировке жидкостей, продувке оборудования).
Популярные статьи  Диод шоттки: принцип работы

Заземление электроприборов и токоведущих частей:

  • согласно ПУЭ, действующим ГОСТам и СНиП, ЗУ электроустановок допускается объединять с заземляющими приспособлениями от статических зарядов;
  • сопротивление ЗУ для защиты от статического электричества не должно быть больше 100 Ом;
  • все электропроводящие поверхности и токоведущие части оборудования должны иметь качественное зануление;
  • пневмотрубопроводы, вентиляционные шахты должны образовывать единую цепь, присоединенную к заземлителям через каждые 40 м, минимальное количество точек – 2 шт;
  • в обязательном порядке отдельным ЗУ к общему контуру подключают аппараты, на поверхностях (внутри) которых может образовываться заряд: дробилки, распылители и др.;
  • крупногабаритная тара подлежит заземлению корпуса в двух противоположных точках по ГОСТу;
  • цистерны во время налива (слива) газов должны быть присоединены к ЗУ, которые, в свою очередь, должны располагаться вне взрывоопасных зон; разгерметизацию люков цистерн производят после присоединения корпуса к контуру заземления;

Электростатическая защита
Заземление приборов с целью защиты человека от поражения электрическим током

шланги, через которые наливаются сжиженные газы и жидкости, должны быть обвиты медными проволоками или тросами, диаметром не менее 4 мм. Проводник должен быть соединен одной стороной с краем шланга, а другим – к заземленной части существующего контура.

Снятие зарядов с твердых поверхностей

Процесс состоит в нейтрализации зарядов ионизацией воздуха вблизи технологического процесса. Согласно действующим ГОСТам, для этого применяют нейтрализаторы:

  • во взрывоопасных цехах устанавливают радиоизотопные нейтрализаторы;
  • для производства гигиенической продукции запрещено применение радиоизотопных нейтрализаторов, в таких случаях целесообразно применение индукционных или высоковольтных нейтрализаторов;
  • если невозможно использовать индукционные нейтрализаторы, целесообразно применить нейтрализационные устройства скользящего разряда;
  • если оборудование имеет сложные геометрические формы, и невозможно обеспечить отвод заряда стандартными методами, используют аэродинамические нейтрализаторы, посредством которых принудительно впрыскиваются ионы в необходимое пространство.

Заряды в газовых смесях

  • для обеспечения безопасных условий, согласно действующим ГОСТам технологических процессов, необходимо применять предварительно очищенные от твердых частиц газы;
  • оборудование должно иметь качественную герметизацию;
  • недопустимо присутствие в газовых смесях металлических частиц и мелких деталей.

Снятие заряда с сыпучих материалов

  • Согласно действующим ГОСТам, перерабатывать сыпучие материалы необходимо в металлических емкостях, или токопроводящих неметаллических.
  • Порошкообразное сырье допускается транспортировать в схожих по составу трубопроводах (если это полимеры, то трубы должны быть из полиэтилена).
  • В производственных помещениях влажность воздуха должна составлять не менее 65%. При невозможности организовать это условие, прибегают к ионизации воздуха.
  • Для улучшения процесса стекания, рабочие поверхности пропитывают поверхностно-активными смазками.
  • Запрещено производить выгрузку сыпучего сырья из целлюлозных, ПВХ и полиэтиленовых пакетов в емкости, температура жидкости в которых выше температуры их воспламенения. В таких случаях используют шнековые установки.

Во избежание возникновения взрывов (вследствие образования искры), следует предотвращать образование взрывоопасных смесей, не допускать скопления пыли, регулярно чистить оборудование от пылевоздушных смесей.

Что такое статическое электричество?

О существовании электричества было известно еще несколько тысяч лет назад, когда древнегреческий философ и математик Фалес Милетский был первым, кто смог подробно описать проявления статического заряда. Вместе с тем, лишь только современные исследователи, работающие на наноуровне, сделали огромный шаг вперед в поисках понимания того, почему трение двух поверхностей друг о друга может привести к возникновению тока.

Независимо от того, насколько гладко может выглядеть та или иная поверхность, при определенном приближении даже на самой гладкой структуре можно заметить неровности и шероховатости. Каждая поверхность, от воздушных шариков до волокон, таких как шерсть или волосы, покрыта микроскопическими ямами, которые и несут ответственность за возникновение статического электричества. Кристофер Миззи, докторант в области материаловедения и инженерии в Северо-Западном университете штата Иллинойс, доказывает, что абсолютно все объекты во Вселенной можно сравнить с нашей планетой, которая хотя и кажется абсолютно гладким голубым шаром из космоса, в действительности представляет собой место с крайне разнообразным ландшафтом.

Согласно статье, опубликованной на портале livescience.com, именно наличие шероховатостей, элементов “ландшафта” материала вкупе с их активным взаимодействием друг с другом, создает при трении тот самый тип энергии, который в официальной науке называется трибоэлектричеством.

Электростатическая защита

Статическое электричество — один из самых распространенных типов энергии в природе

Одним из наиболее необычных качеств статического электричества является легкость его производства при использовании материалов, ограничивающих электричество и известных человечеству в качестве изоляторов. Наиболее часто встречающимися изоляторами на Земле считаются резина, шерсть и волосы, которые не позволяют заряженным электронам продвигаться дальше, но подавляют их. Вместе с тем, статическое электричество возникает и тогда, когда резкости в изоляторах трутся друг о друга, создавая помехи для электронных облаков. Поскольку электроны в изоляторах не могут легко перемещаться, это трение может исказить электронные облака, деформируя их и придавая им асимметричную форму. Так, при некоторых обстоятельствах, полученная форма электронного облака может неравномерно распределить напряжение по всей поверхности материала. В повседневной жизни это явление может наглядно проявиться в случае, если вы решите пройтись в шерстяных носках по ковру. Трение материалов в данном случае заставит изгибаться шероховатости на обеих активных поверхностях, деформируя электронные облака и вызывая небольшую разницу в напряжении, которая может проявиться как раз тогда, когда вы дотронетесь до дверной ручки или до другого человека.

Авторы исследования считают, что новообретенное понимание о работе статического электричества может способствовать развитию разработки нового вида полезной ткани, которая сможет производить энергию трения для подзарядки мобильных устройств и другой небольшой техники. Помимо этого, именно статическое электричество может помочь нам при создании безопасных производственных сред с лучшим устранением пожаров из-за наличия мелкодисперсной пыли в помещениях.

Влияние

Самое яркое проявление статического электричества можно встретить на промышленном производстве. По его вине происходят непредвиденные воспламенения горючих материалов из-за образующихся искр при контакте оператора с заземленным оборудованием. Электростатическая энергия может нести в себе разряд на 1.4 джоуля, чего становится достаточно для возгорания горючих веществ.

Интересно! Для предотвращения подобных ситуаций был разработан ГОСТ, в соответствии с которым накопленная энергия от статического заряда не может превышать 40% от необходимой энергии для загорания веществ или материалов.

Электростатическая защита
Действие статического электричества отражается на волосах

Человек является переносчиком частиц, которые скапливаются на одежде. При этом главным условием накопления заряда является наличие обуви с подошвой, которая не позволяет электричеству уходить с тела.

Человек ощущает статику на себе в виде продолжительного напряжения или в качестве моментального разряда. В первом случае проходит слабое напряжение на протяжении долгого времени, а во втором — краткосрочное высвобождение, ощущаемое как покалывание. Редко мощность разряда превышает 7 джоулей, поэтому электричество не представляет опасности напрямую, но есть и косвенное влияние. Оно проявляется в виде сокращения мышц, из-за чего могут возникать производственные травмы.

Вам это будет интересно Принцип работы реле тока и виды устройств

Внимание! После сокращения мышц части тела невольно могут попасть в рабочие и движущиеся механизмы. Постоянные разряды начинают отражаться на человеке

Ему становится сложнее работать, увеличивается раздраженность и усталость. Ритм сна и функционирование нервной системы в целом ухудшается

Постоянные разряды начинают отражаться на человеке. Ему становится сложнее работать, увеличивается раздраженность и усталость. Ритм сна и функционирование нервной системы в целом ухудшается.

Рассеивание и нейтрализация

Поскольку мы просто не можем полностью исключить генерацию электростатического заряда в EPA, наш пятый принцип состоит в безопасном рассеивании или нейтрализации тех электростатических зарядов, которые все- таки возникают. Правильное заземление и использование проводящих или рассеивающих материалов играет важную роль. Например, у персонала начинающего работу может быть заряд на теле эти заряды могут быть устранены – нужно надеть браслет на запястье или пройтись по антистатическому покрытию, надев антистатическую обувь. Заряд уходит в землю при этом не повреждая чувствительные устройства. Для того, чтобы предотвратить повреждение заряженного устройства, величину тока разряда нужно контролировать с помощью материалов, рассеивающих статическое электричество.

Для некоторых предметов, изготовленных из обычных пластмасс или других диэлектриков, заземление не поможет устранить электростатический заряд, нет пути для прохождения тока на землю. Если такие предметы невозможно убрать из зоны, защищенной от электростатического разряда, заряд на них нейтрализуется с помощью ионизация. В процессе ионизации генерируются отрицательные и положительные ионы. Одноименные ионы отталкиваются от заряженного объекта, в то время как разноименные заряженные ионы притягиваются к поверхности заряженного объекта, таким образом нейтрализуя заряд (см. Рисунок 1). Если ионизатор сбалансирован, заряд равен нулю.

Неприятное статическое электричество и защита от него

Поговорим о том, как защитить себя при работе, в условиях дома или поездок на машине.

Что нужно знать:

  1. В первую очередь следует говорить про увлажнение воздуха. Есть условие: нельзя устанавливать приборы для увлажнения в непосредственной близости от электроприборов, ведь в этом случае приборы для увлажнения превращаются в причины замыкания, что несет еще большую опасность.
  2. Во время заправки автомобиля защита заключается в том, чтобы из салона машины никто не выходил и никто не садился в салон. Такое предостережение объясняется тем, что перемещения подобного рода становятся причиной возникновения напряжения. Если ток соприкоснется с горючей жидкостью это спровоцирует сильный взрыв;
  3. В быту так же можно использовать антистатики чтобы бороться с электрическим зарядом с половиков, ковров и пылесосов.

Сейчас существуют средства, направленные на снятие статики с пластика, с обивки автомобильных сидений, с электроприборов, которые способны ударить статистическим током с высоким показателем вольт.

Примеры защиты от ESD

Основным компонентом множества электронных плат является микроконтроллер. У него, как правило, есть набор периферийных блоков, которые и являются связующим звеном со внешним миром. Например, широкую известность получили такие шины передачи данных, как USB, RS-232, Ethernet и их разъемы для подключения внешних устройств. Кроме этого, существуют разъемы для подключения аудио, карт памяти, а также всевозможные кнопки для выполнения определенных функций пользовательских программ. Все эти периферийные устройства должны иметь соответствующую защиту от статического электричества.

Рассмотрим несколько конкретных примеров. На рисунке 21 показана защита ESD для шины USB 2.0.

Рис. 21. Защита ESD для шины USB 2.0

Схема подключения USB-кабеля должна иметь в своем составе такое устройство, которое бы надежно защищало микроконтроллер от статического электричества и в то же самое время обладало низкой емкостью для обеспечения совместимости с глазковой диаграммой протокола USB. Устройство USBLC6 отлично подходит для этих задач, обеспечивая глазковую диаграмму, совместимую со стандартом USB 2.0 и выдерживая разряд ±15 кВ, согласно стандарту IEC61000-4-2. Рекомендации по схеме и внешнему виду печатной платы для USBLC6 могут быть найдены в референсном дизайне для микроконтроллера STM32L4.

Популярные статьи  Сварка проводов в распределительной коробке

На рисунке 22 показана схема подключения для RS-232.

Рис. 22. Защита ESD для шины RS-232

В этом примере, как и в примере для USB, нужно обеспечить две функции: защиту от статического электричества и удовлетворительные характеристики канала передачи данных. Для шины RS-232 используется защитное устройство ESDA14V2BP6, выполняющее обе функции. Рекомендации по схеме и внешнему виду печатной платы для ESDA14V2BP6 также могут быть найдены в референсном дизайне для микроконтроллера STM32L4.

На рисунке 23 показана схема подключения кнопок.

Рис. 23. Защита ESD для кнопок

Кнопки подсоединены к портам ввода/вывода микроконтроллера, поэтому защита кнопок от статического электричества фактически является защитой портов микроконтроллера. Несмотря на то, что кнопки выполнены из непроводящего материала, они чувствительны к статическому электричеству. ESDA5V3L выполняет функции защиты портов микроконтроллера от статического электричества

Помимо этого, данная диодная сборка совмещает два диода в одном корпусе, позволяя таким образом уменьшить общий размер печатной платы, что также важно. Рекомендации по трассировке и схемотехнике для кнопок приведены в референсном дизайне для микроконтроллера STM32L4

Рис. 24. Защита ESD для платы STM32MP1-DK2

На рисунке 24 показана плата STM32MP1-DK2 и специально выделены все компоненты, отвечающие за защиту от статического электричества. Как видно из рисунка, все периферийные устройства микропроцессора, включая порты ввода/вывода и разъем для подключения SD-карты, надежно защищены от статического электричества. Все эти меры по защите позволяют получить устройство, соответствующее стандарту IEC61000-4-2 на системном уровне.

Для легкого и эффективного подбора компонентов, необходимых для защиты от статического электричества, компания STMicroelectronics разработала специальное приложение PROTECTION FINDER, доступное как для Android, так и для IOS (рисунок 25). Это приложение имеет удобный графический интерфейс и позволяет всего за четыре шага выбора из меню подобрать нужное устройство защиты для конкретного приложения.

Рис. 25. Реквизиты приложения ST PROTECTION FINDER

Защита от статического электричества является необходимым элементом любого современного устройства. Для унификации требований по защите был разработан ряд стандартов, описывающих тесты для различных условий применения. Для соответствия данным стандартам необходимо использование специальных устройств и практик проектирования печатных плат. Все устройства производства STMicroelectronics проектируются с учетом самых жестких требований по защите от статического электричества. Кроме того, ряд дополнительных инструментов, таких как доступные примеры проектирования и специальные программные приложения, облегчают пользователям создание собственных устройств в соответствии со всеми необходимыми стандартами. Специалисты КОМПЭЛ всегда рады помочь сделать правильный выбор для конкретного приложения.

•••

Чем и как снять с себя статику

Многочисленные исследования доказывают вред такого поля. От него страдает здоровье человека. При взаимодействии с наэлектризованным предметом может отказать бытовая и производственная техника. Подобное часто становится причиной травмы на предприятии и в быту. Также стоит учесть, что слишком частое прохождение разрядов через тело человека вызывает различные отклонения в слаженной работе организма

Поэтому крайне важно знать, чем снять статическое электричество. Разряды накапливаются на спецодежде, рабочих халатах, обуви

Как снимать статическое электричество — должен знать каждый работник любого производства. Наиболее действенными способами являются:

  1. Заземление оборудования.
  2. Прикосновение человека к заземленной батарее.
  3. Прикосновение к заземленному промышленному трубопроводу.
  4. Использование антистатических покрытий.
  5. Применение антистатического спрея.

Рассмотрим данные методы подробнее. На предприятии обязаны соблюдаться определенные техники безопасности

Особенно важно их применение при взаимодействии с легко воспламеняющими материалами. Любая искра может стать причиной пожара

Поэтому крайне необходимо предотвратить проникновение статического электричества в рабочую зону. Важно повысить проводимость материалов, увеличить устойчивость всех механизмов и снизить скорости обработки используемых предметов. Помните, что создание грамотного заземления и знание, как снять статическое электричество, станут эффективными мерами безопасности на производстве.

Чтобы действовали правила безопасности на производстве, важно:

  1. Повысить устойчивость различных механизмов и блокировать формирование наэлектризованности на рабочем месте.
  2. Защитить работоспособность оборудования металлической сеткой.
  3. Исключить образование разряда.

Различные физические, механические и химические принципы предотвращают либо уменьшают формирование заряда. Улучшить ситуацию можно за счет:

  • коронирования;
  • ионизации воздуха;
  • возвышения рабочей поверхности;
  • грамотного подбора взаимодействующих материалов.

Вышеуказанное дает полное представление, как снимать статическое электричество в производственных условиях и чем именно ликвидировать заряд.

Большой вред может причинить разряд, который возникает при производстве полупроводниковых материалов. Приборы в цеху могут выйти из строя. Разряд может образоваться и случайно. Причинами подобного часто становятся:

  • высокая энергия потенциала;
  • переходной процесс;
  • электросопротивление контактов.

Ток возрастает на протяжении минимально короткого срока, достигает максимума и затем снижается. Однако разряд может успеть пройти через тело оператора прибора.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: