Что такое идеальный трансформатор и для чего он нужен?

Режимы работы

Холостой ход (ХХ)

Такой порядок работы реализуется от размыкания вторичной сети, после чего в ней прекращается течение электротока. В первичной обмотке течет ток холостого хода, составной его элемент — ток намагничивающий.

Когда вторичный ток равен нулю, электродвижущая сила индукции в первичной обмотке целиком возмещает напряжение питающего источника, а потому при пропаже нагрузочных токов, идущий сквозь первичную обмотку ток по своему значению соответствует току намагничивающему.

Функциональное назначение работы трансформаторов вхолостую — определение их важнейших параметров:

  • КПД;
  • показателя трансформирования;
  • потерь в магнитопроводе.

Режим нагрузки

Режим характеризуется функционированием устройства при подаче напряжения на вводы первичной цепи и подключении нагрузки во вторичной. Нагружающий ток идет по «вторичке», а в первичной — суммарный ток нагрузки и ток холостой работы. Этот режим функционирования считается для прибора преобладающим.

На вопрос, как работает трансформатор в основном режиме, отвечает основной закон ЭДС индукции. Принцип таков: подача нагрузки к вторичной обмотке вызывает образование во вторичной цепи магнитного потока, образующего в сердечнике нагружающий электроток. Направлен он в сторону, противоположную его течению, создающегося первичной обмоткой. В первичной цепи паритет электродвижущих сил поставщика электроэнергии и индукции не соблюдается, в первичной обмотке осуществляется повышение электротока до того времени, пока магнитный поток не вернется к своему исходному значению.

Короткое замыкание (КЗ)

Переход прибора в этот режим осуществляется при кратковременном замыкании вторичной цепи. Короткое замыкание — особый тип нагрузки, прилагаемая нагрузка — сопротивление вторичной обмотки — единственная.

Принцип работы трансформатора в режиме КЗ таков: к первичной обмотке приходит незначительное переменное напряжение, выводы вторичной соединяются накоротко. Напряжение на входе устанавливается с таким расчетом, чтобы величина замыкающего тока соответствовала величине номинального электротока устройства. Величина напряжения определяет энергопотери, приходящиеся на разогрев обмоток, а также на активное сопротивление.

Такой режим характерен для приборов измерительного типа.

Исходя из многообразия устройств и видов назначения трансформаторов, можно с уверенностью сказать, что на сегодня они — незаменимые, использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения, как гражданских сетей, так и сетей предприятий промышленности.

Что нужно для намотки устройства

Работает тороидальный трансформатор принципиально так же, как и трансформаторы с другими формами сердечников: он понижает или повышает напряжение, повышает или понижает ток — преобразует электроэнергию.

Но тороидальный трансформатор отличается при той же передаваемой мощности меньшими размерами и меньшим весом, то есть лучшими экономическими показателями. Основное, что должен знать и главное понимать человек, который мотает трансформатор:

  • длина провода (количество витков) это напряжение;
  • сечение проводника – это ток, которым можно нагружать его;
  • если число витков в первичной цепи малое, то это лишний нагрев провода;
  • если габаритная мощность недостаточная (потребляется больше возможного), это опять-таки тепло;
  • перегрев трансформатора приводит к снижению надёжности.

Для намотки понадобится трансформаторное железо в форме тора, лакопровод (на обмотку трансформатора нужен обмоточный провод). Также пригодится скотч малярный (бумажный), клей ПВА, тканевая изолента или киперка и кусочки провода в изоляции.

Схема расчета конструкции трансформатора.

Перед намоткой необходимо подготовить железо к намотке. Если посмотрите на углы трансформатора, то уведите что они под углом 90 градусов, в этих точках будет изгибаться провод и будет облущиваться лак, что б этого не было необходимо обработать углы напильником скруглив их максимально. Минимальный радиус окружности 3мм.

Небольшая хитрость, при обработке углов напильником необходимо избегать зализывания стали, дабы слои между собой оставались не замкнутыми! Для этого следует производить движения напильником вдоль направления трансформаторной ленты. После обработки рекомендую просмотреть углы на замыкание слоев и доработать их мелким напильником.

Чтобы изолировать сердечник от обмотки необходимо его изолировать ТКАНЕВОЙ изолентой (или киперкой пропитанной парафином-воском). Лучше использовать изоленту шириной около 25мм, тогда будет максимальное покрытие металла в один слой, что позволяет экономить место в окне. Конец намотки не заклеиваем.

Будет интересно Масляные трансформаторы – что это такое, устройство и принцип работы

Лакопровод

Лакопроводом называют электрический проводник изоляция которого сделана из лака (намоточный или обмоточный провод). Бывает разных марок ПЭВ, ПЭВ-2, ПЭТ-155 и другие. Рекомендую использовать ПЭВ-2, насыщенный оранжевый цвет. Также очень хорошо себя показал провод очень тёмный с виду (ПЭЛ), цвета гнилой вишни, такой имеет толстый слой изоляции, что позволяет его использовать для трансформаторов высоковольтников (более 500В).

Выводы обмоток необходимо «усилить» при помощи дополнительной изоляции. Для этих вещей очень хорошо подходит ПВХ-изоляция (советская белая), но ещё лучше подходит изоляция из провода необходимого сечения.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Готовая намотка с лакопроводом.

Применять термоусадку можно, но лучше использовать ПВХ или изоляцию потому как первая имеет свойство изгибаться в одном месте что нам очень ненужно мы от этого пытаемся защитится дабы провод не отломался.

Популярные статьи  Пайка алюминия паяльником и газовой горелкой

Для того, чтобы стянуть изоляцию рекомендую взять провод, который имеет дополнительную изоляцию в виде нитки, обмотанную вокруг проводника. В этом случае нить не дает сильной связи между ПВХ и медью и позволяет стянуть изоляцию. Чтоб было проще стягивать провод нужно немного перегибать (под 45 градусов).

Для того чтоб легче было считать витки их лучше группировать по 5 или 10 витков. Натягивать провод необходимо не чётко перпендикулярно к касательной, а слегка наклонено в сторону намотки, как будто внутренняя часть намотки идёт впереди наружной. Таким образом намотки провод при натяжке будет сам прижимается к другим уже уложенным виткам.

Очень хорошо будет если в ходе намотки будете использовать бумагу для выпечки (пергамент) нарезанную на такие же полосочки и после обмотанной. В итоге транс необходимо будет пропитать, а реально сварить на паровой бане смеси 50:50 соответственно парафин/воск.

Главная особенность тороидального трансформатора — небольшой общий объем устройства, доходящий до половины в сравнении с другими типами магнитопроводов. Шихтованный сердечник вдвое больше по объему чем тороидальный ленточный сердечник при той же габаритной мощности

Поэтому тороидальные трансформаторы удобнее устанавливать и подключать, и уже не так важно, идет ли речь о внутреннем или о наружном монтаже

Габаритная мощность и КПД трансформатора

Что такое идеальный трансформатор и для чего он нужен?Для начала отметим, что, чем больше поперечное сечение сердечника (или магнитопровода) трансформатора, тем большую мощность можно получить на вторичных обмотках.

Именно поэтому большие трансформаторы, установленные в трансформаторных подстанциях и питающие несколько многоэтажек, имеют большой вес и габариты.

Маломощные трансформаторы, отдающие мощность в несколько Ватт (Вт), умещаются на ладони.

Трансформатор характеризуется габаритный мощностью, т.е. суммарной мощностью, отдаваемой всеми вторичными обмотками.

Как известно, мощность Р2 = U2 * I2, где U2, I2 – соответственно, напряжение и ток вторичной обмотки трансформатора.

Именно поэтому, КПД (коэффициент полезного действия) трансформатора, т.е. отношение мощности вторичной обмотки P2 к мощности первичной обмотки P1 меньше 100%.

КПД: η = P2 / P1

В общем случае, чем больше габаритная мощность трансформатора, тем больше его КПД.

КПД маломощных трансформаторов может составлять величину 60 – 80%. КПД мощных трансформаторов в распределительных подстанциях может иметь величину 99% .

Провода в обмотках нагреваются потому, что они имеют не нулевое сопротивление. Прохождения тока по проводнику, обладающему сопротивлением, вызывает, по закону Джоуля-Ленца, его нагрев.

Именно поэтому обмотки трансформатора выполняют из меди, как материала, обладающего низким удельным сопротивлением.

Устройство и принцип работы однофазного двухобмоточного трансформатора

Назначение, область применения и классификация трансформаторов

Трансформеры.

Трансформатор – это электромагнитное устройство, используемое для преобразования электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения без изменения частоты.

Необходимость преобразования, то есть увеличения и уменьшения переменного напряжения, вызвана необходимостью передачи электрической энергии на большие расстояния. Чем выше значение передаваемого напряжения, тем меньше ток при той же мощности генератора. Следовательно, для передачи энергии потребуются провода меньшего сечения, что приведет к экономии цветных металлов, снижению веса и стоимости линий электропередачи (ЛЭП). Кроме того, с уменьшением тока потери мощности в линиях передачи уменьшаются ∆P = I2Rl.

По применению трансформаторы можно разделить на следующие типы:

1. Силовые трансформаторы, используемые в сетях передачи и распределения.

2. Автотрансформаторы с постепенной регулировкой выходного напряжения и используемые для его изменения (регулирования).

3. Измерительные трансформаторы, используемые как элементы измерительных приборов.

4. Трансформаторы специального назначения (печь, пайка, пик, изоляция и т.д.)

Используемые в настоящее время изоляционные материалы позволяют повысить напряжение в ЛЭП до 1250 кВ.

Трансформатор состоит из ферромагнитного (стального) сердечника (ФМС) и двух обмоток: первичной с числом витков W1, на которую подается напряжение источника U1, и вторичной – с числом витков W2, на клеммах которых напряжение U2 Сердечник трансформатора собирается из отдельных листов электротехнической стали (толщиной 0,3-0,5 мм), изолированных друг от друга для уменьшения потерь на вихревые токи.

Работа трансформатора основана на принципе взаимной индукции. При включении первичной обмотки W1 переменным напряжением U1 в ней появится ток I0, который, протекая по виткам W1, вызовет появление магнитного потока первичной обмотки, состоящей из основных или, по-другому, рабочий поток Ф, замыкающийся по сердечнику, и поток дисперсии Фδ1, замыкающийся в воздухе (рис. 4.3.). Электричество передается от первичного к вторичному через рабочий процесс.

Переменный синусоидальный рабочий магнитный поток, основанный на законе электромагнитной индукции, индуцирует в первичной обмотке ЭДС самоиндукции E1, а во вторичной обмотке – ЭДС взаимной индукции E2, которая создает напряжение U2 на выводах ‘ вторичная обмотка.

Если к вторичной обмотке трансформатора подключить нагрузку Zн (рис. 4.4.), В ней появится ток I2, который, протекая по виткам W2, вызовет появление магнитного потока во вторичной обмотке. Этот поток состоит из потока Ф2, закрытого в активной зоне, и вытекающего потока Фδ2, закрытого в воздухе.

Вторичный поток F2, согласно правилу Ленца, всегда направлен навстречу потоку первичной обмотки и стремится его уменьшить. Уменьшение расхода Ф приведет к уменьшению ЭДС E1. В результате разница между напряжением U1 и ЭДС E1 увеличится, что приведет к увеличению тока обмотки I0 до тока I1, который компенсирует магнитный поток Ф2 (рисунок 4.4). Таким образом, общий рабочий магнитный поток F1 – F2 останется неизменным и примерно равен начальному потоку F, приложенному к обеим обмоткам трансформатора.

Популярные статьи  Соединение медных проводов через стальные шайбы

Переменные потоки магнитной дисперсии первичной и вторичной обмоток Фδ1 и 2 связаны с одной из обмоток и наводят в них соответствующие ЭДС дисперсии Еδ1 и 2.

Что такое однофазный трансформатор?

Однофазные трансформаторы — это устройства, предназначенные для понижения входного напряжения. Их используют, в основном, из соображений безопасности, а иногда и для конкретных технических требований (к примеру для светодиодного освещения). В быту они тоже используются довольно часто — гораздо чаще, чем вы можете себе представить, хотя, конечно, они могут выглядеть совершенно по-другому нежели традиционные трансформаторы.

Однофазный трансформатор представляет собой простую конструкцию, которая состоит из сердечника и двух обмоток. Во время прохождения электрического тока через первичную обмотку во вторичной обмотке индуцируется поток тока.

Один из наиболее часто используемых вариантов домашних трансформаторов, это так называемый колокольный трансформатор. Он имеет вторичную обмотку, выбранную таким образом, чтобы из основного напряжения сети ее можно было снизить до 3, 8, 12, а иногда и до 24 В. Это, безусловно, далеко не все параметры, поскольку в зависимости от потребностей вы можете использовать различные типы трансформаторов, которые позволяют получать самые разные напряжения.

Следует добавить, что компоненты трансформатора также включают в себя элементы безопасности: тепловые и с задержкой, соответствующие напряжению питания. Хотя их наличие не требуется для самого изменения напряжения, они очень полезны по функциональным причинам.

Состояние работы трансформатора

Чтобы полностью понять работу трансформатора, недостаточно знать его структуру. Для полной безопасности и эффективной работы этих устройств также необходимо различать несколько различных рабочих состояний трансформатора.

  • Состояние холостого хода — в этом состоянии в первичной обмотке течет ток очень низкой интенсивности. Сам трансформатор подключен к сети и потребляет электроэнергию в количестве, равном потерям энергии на сердечнике;
  • Состояние нагрузки (работа однофазного трансформатора) — ток протекает при номинальном токе через первичную обмотку, в то время как из-за замыкания цепи, подключенной к вторичной обмотке, также протекает ток на этом участке, значение которого зависит того какая мощность есть на приемнике;
  • Состояние короткого замыкания — в этом состоянии короткое замыкание во вторичной обмотке приводит к очень высокому току в обеих обмотках, что обычно быстро приводит к повреждению изоляции и защите от короткого замыкания. Такое состояние не является нормальным рабочим состоянием — оно возникает в результате скрытых дефектов или потребления приемника или самого трансформатора.

Виды трансформаторов

В зависимости от своего применения и характеристик трансформаторы бывают нескольких видов. К примеру, в электрических сетях населенных пунктов, промышленных предприятий применяют трансформаторы силовые, основной задачей которых является понижение напряжения в сети до общепринятого – 220 В. Если трансформатор предназначен для регулировки тока, он называется трансформатор тока, а если устройство регулирует напряжение – то это трансформатор напряжения. В обычных сетях применяются однофазные трансформаторы, в сетях на три провода (фаза, ноль, заземление) нужен трехфазный трансформатор. Бытовой трансформатор, 220В предназначается для защиты бытовой техники от перепадов напряжения.

Что такое идеальный трансформатор и для чего он нужен?
Виды трансформаторов

Сварочный трансформатор предназначен для разделения сварочной и силовой сети, для понижения напряжения в сети до нужной для сварки величины. Масляный трансформатор предназначается для использования в сетях с напряжением выше 6 000 Вольт. Конструкция трансформатора включает в себя: магнитопровод, обмотки, бак, а также крышки с вводами. Магнитопровод состоит из 2 листов электротехнической стали, которые изолированы друг от друга, обмотки, как правило, делают из алюминиевого или медного провода. Регулировка напряжения производится с помощью ответвления, которое соединяется с переключателем. Существует два вида переключения ответвлений: переключение под нагрузкой — РПН (регулирование под нагрузкой), а также без нагрузки, после того, как трансформатор отключен от внешней сети (ПБВ, или переключение без возбуждения). Большее распространение получил второй способ регулировки напряжения.

Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.

4.3. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРЕ. УРАВНЕНИЕ ЭДС

Как видно из рис. 4.2.1, основной магнитный поток Ф, действующий в
магнито-проводе трансформатора, сцепляется с витками обмоток и наводит
в них ЭДС:

Предположим, что магнитный поток Ф является синусоидальной функцией, т.е.

Подставим это значение в выражения для ЭДС и, произведя дифференцирование,
получим:

Что такое идеальный трансформатор и для чего он нужен?

где

Из последних формул видно, что ЭДС е1 и е2 отстают по фазе от
потока Ф на угол p /2.

Максимальное значение ЭДС:

Переходя к действующим значениям, имеем

Если Фmах выражено в максвеллах, а Е в вольтах, то

Отношение ЭДС обмотки высшего напряжения к ЭДС обмотки низшего напряжения
называется коэффициентом трансформации.

Подставив вместо ЭДС Е1 и Е2 их значения, получим:

Токи I1 и I2, протекающие по обмоткам трансформатора, помимо основного
потока Ф создают магнитные потоки рассеяния ФР1 и ФР2 (рис. 4.2.1).
Каждый из этих потоков сцепляется только с витками собственной обмотки
и индуктирует в них реактивные ЭДС рассеяния ЕР1 и ЕР2. Величины этих
ЭДС прямо пропорциональны возбуждающим их токам:

Популярные статьи  Электрическая емкость кабеля

где x1 и x2 — индуктивные сопротивления рассеяния обмоток.
Кроме этого, в каждой обмотке трансформатора имеет место активное падение
напряжения, которое компенсируется своей ЭДС:

Рассмотрим действие изученных выше ЭДС в обмотках трансформатора.
В первичной обмотке Е1 представляет собой ЭДС самоиндукции, а поэтому
она направлена против первичного напряжения u1. В связи с этим уравнение
ЭДС для первичной обмотки имеет вид:

Величины j I1 x1 и I1 r1 представляют собой падение напряжений в первичной
обмотке трансформатора. Обычно j I1 x1 и I1 r1 невелики, а поэтому,
с некоторым приближением, можно считать, что подведенное к трансформатору
напряжение u1 уравновешивается ЭДС Е1:

Во вторичной обмотке Е2 выполняет роль источника тока, поэтому
уравнение ЭДС для вторичной обмотки имеет вид:

где j I2 x2 и I2 r2 — падение напряжения во вторичной обмотке.
При холостом ходе трансформатора первичная обмотка включена на напряжение
u1, а вторичная разомкнута (I2 = 0).
При этих условиях в трансформаторе действует только одна намагничивающая
сила первичной обмотки I10 w1, созданная током I10, которая наводит
в магнитопроводе трансформатора основной магнитный поток:

где Rм — магнитное сопротивление магнитопровода потоку.
При подключении к вторичной обмотке нагрузки ZН в ней возникает ток
I2. При этом ток в первичной обмотке увеличивается до значения I1.
Теперь поток Ф создается действием двух намагничивающих сил I1 w1 и
I2 w2.

Из выражения

видно, что основной поток Ф0 не зависит от нагрузки трансформатора,
при неизменом напряжении u1. Этот вывод дает право приравнять:

Что такое идеальный трансформатор и для чего он нужен?

Область применения

У тороидальных трансформаторов есть многочисленные области применения, и среди них мы можем подчеркнуть, как наиболее распространенные следующие:

  1. Бытовая электроника.
  2. Медицинская электроника.
  3. Конвертеры.
  4. Системы электропитания.
  5. Аудиосистемы.
  6. Системы безопасности.
  7. Телекоммуникации.
  8. Низковольтное освещение.

Сегодня тороидальные трансформаторы применяют в различных сферах промышленности, и наиболее часто тороидальные трансформаторы устанавливают в источники бесперебойного питания, в стабилизаторы напряжения, применяют для питания осветительной техники и радиотехники, часто тороидальные трансформаторы можно увидеть в медицинском и диагностическом оборудовании, в сварочном оборудовании.

Классификация трансформаторов

Трансформаторы бывают:

  • повышающими (если на вторичной обмотке напряжение больше, чем на первичной);
  • понижающими (если на второй катушке напряжение меньше, чем на первой).

Напряжение на первичной и выходной катушках зависит от соотношения количества витков обмоток на них. Чем их больше, тем выше напряжение. Соответственно, если входная обмотка имеет больше витков, чем выходная, на ней будет более высокое напряжение, и наоборот.

Трансформаторы отличаются обширной классификацией по назначению:

  1. Силовой. Назначение силовых трансформаторов ясно из названия. В основном это устройства большой мощности, используемые в сетях ЛЭП для преобразования электрической энергии и передачи ее конечному потребителю. Использование таких устройств возможно в высоковольтных трехфазных сетях.
  2. Автотрансформатор. Это прибор, в котором первичная и вторичная обмотки соединены между собой напрямую. Такое устройство характеризуется тремя выводами. Трансформаторы данного типа имеют повышенный риск высоковольтного удара по нагрузке. Поэтому они должны быть надежно заземлены.
  3. Трансформатор тока или измерительный трансформатор. В таких устройствах первичную обмотку подключают последовательно в электроцепь с другими устройствами и получают гальваническую развязку. Первичная цепь контролируется изменением однофазной нагрузки, а вторичная катушка используется в цепи сигнализации или измерительных приборов. В таком типе устройства вторичная обмотка работает в режиме короткого замыкания. 
  4. Трансформатор напряжения. Это устройство, понижающее напряжение. Обычно применяется для изоляции цепей защиты измерительных приборов.
  5. Импульсный. Это прибор, созданный для преобразования импульсов при обязательном сохранении их формы. Устройство меняет амплитуду и полярность импульсных сигналов, не затрагивая форму.
  6. Сварочный. Для работы такого устройства нужен большой сварочный ток, с помощью которого аппарат расплавляет металл. Сетевое напряжение при этом снижено до безопасного уровня.
  7. Разделительный. Основной характеристикой такого прибора является отсутствие электрической связи между обводками. Силовые разделительные аппараты используют для повышения безопасности электросетей и для обеспечения гальванической развязки между узлами электроцепей.
  8. Согласующий. Такое устройство применяется для согласования сопротивления в электронных схемах. Прибор обеспечивает минимальное искажение сигналов, создает развязки между узлами устройств в электрической цепи.
  9. Пик-трансформатор. Аппарат преобразовывает синусоидальный ток в импульсное напряжение. Полярность напряжения на выходе меняется через каждые полпериода.
  10. Воздушный. Это силовой трансформатор сухого охлаждения. Такой тип устройств обычно применяется для преобразования напряжения в сети, в том числе и в трехфазных схемах.
  11. Масляный. Это силовой трансформатор, у которого охлаждение происходит с помощью специального масла. Такие приборы применяют при большой выходной мощности (выше 6 кВ), чтобы предотвратить разрушение изоляции обмоток вследствие их перегрева.
  12. Сдвоенный дроссель. Устройство имеет абсолютно одинаковые катушки, между которыми образуется встречный индуктивный фильтр. Такой прибор эффективнее, чем у дросселя.
  13. Вращающийся. Устройство состоит из двух половинок сердечника с катушками, которые вращаются относительно друг друга. Обмен сигналами в приборе происходит при больших скоростях вращения.
Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: