Ионистор — устройство, применение, технические параметры

Содержание

Как зарядить ионистор

Для зарядки этого элемента нужен источник питания. Если он имеется в схеме, и прибор работает корректно, то ионистор заряжается сам по себе и поддерживает напряжение, передаваемое от аккумулятора или электрической сети. Если необходимо зарядить приспособление самостоятельно, то подойдет схема, описная ниже.

Ионистор — устройство, применение, технические параметры
Пример подключения для зарядки

Прибор запитывают от 12-вольтного адаптера. Затем используется стабилизатор напряжения и тока для регулирования 5,5 В для зарядки элемента. Это напряжение подается на конденсатор через полевой MOSFET-транзистор, который действует в роли переключателя. Он замыкается только тогда, когда напряжение в ионисторе падает до 4,8 В.

Важно! Если напряжение повышается, то транзистор размыкается, и зарядка прекращается

Принцип работы ионистора

Как уже было сказано, ионистор сильно напоминает конденсатор, но в отличие от него он не имеет диэлектрического слоя вокруг себя. Обкладки представляют собой особые вещества, которые копят заряды противоположных знаков.

Известно, что емкостные характеристики конденсаторов, как и ионисторов, зависят от величины обкладок. Рассматриваемый элемент обладает обкладками из активированного угля или специально подготовленного вспененного углерода. Это обеспечивает повышенную площадь обкладок.

Вам это будет интересно Монтаж и подключение теплого пола

Ионистор — устройство, применение, технические параметры
Простая схема, демонстрирующая принцип работы

Ионистор обладает выводами, которые сепарированы разделителем, помещенным в электролиты. Нужно это для предотвращения вероятных коротких замыканий. Электролиты чаще всего представляют собой кислоты и щелочи в любом приемлемом агрегатном состоянии.

Обратите внимание! При использовании электролитического йода или серебра можно получить качественный ионистор со значительными емкостными характеристиками, способностью работать при низких температурах и малым саморазрядом. Во время протекания электрических и химических реакций часть электронов отделяется от полюсов приспособления и обеспечивает создание положительного заряда

Отрицательно заряженные ионы, которые находятся в электролите, притягиваются этими полюсами со знаком «плюс». В результате получается электрический слой

Во время протекания электрических и химических реакций часть электронов отделяется от полюсов приспособления и обеспечивает создание положительного заряда. Отрицательно заряженные ионы, которые находятся в электролите, притягиваются этими полюсами со знаком «плюс». В результате получается электрический слой.

Ионистор — устройство, применение, технические параметры
Ионистор на плате магнитолы

Сам же заряд сосредотачивается на границах углеродных полюсов и электролитического вещества. Слой очень тонкий, всего 1-5 нанометров в толщину, а это значительно повышает емкость приспособления.

Ионисторы и АКБ – сравнение параметров

Принимая решение о выборе суперконденсатора или аккумулятора для проектируемого устройства, надо учитывать ряд ключевых технических параметров.

Скорость зарядки – несомненным преимуществом суперконденсаторов является очень короткое время зарядки, зависящее от емкости и установленного ограничения тока – в случае меньшей емкости обычно не возникает проблем с получением времени зарядки от долей секунды до несколько секунд. Такие диапазоны недостижимы для любых батарей, имеющихся на рынке, в случае которых даже частичная подзарядка требует как минимум нескольких минут.

Плотность энергии – этот параметр, выражаемый в единицах энергии на килограмм массы данного источника (обычно [Втч / кг]) для суперконденсаторов во много раз ниже, чем для любого типа аккумулятора. То есть для накопления того же количества энергии, что и в батарее (например, в литий-ионной), потребуется использование гораздо большего по размерам и более тяжелого суперконденсатора.

Плотность мощности – параметр, выражаемый в единицах мощности на килограмм массы источника [Вт / кг], намного выше для суперконденсаторов, чем для обычных электрохимических батарей. Высокое значение плотности мощности означает, что даже небольшой суперконденсатор способен подавать относительно высокий ток на потребитель – это связано с очень низким сопротивлением ESR. Сравнение различных типов источников тока в плане энергии и удельной мощности показано на рисунке.

Ионистор — устройство, применение, технические параметрыСравнение различных типов источников энергии на плоскости энергии и плотности мощности

Срок службы – суперконденсаторы имеют гораздо более длительный срок службы, чем обычные электролитические конденсаторы – и хотя они также подвергаются неизбежным процессам старения, количество циклов заряда в течение гарантированного срока службы практически неограничено (особенно в небольших моделях EDLC, предназначенных для монтажа на печатной плате). Эти особенности делают суперконденсаторы идеальным выбором там, где частая перезарядка происходит во время нормального рабочего цикла.

Номинальное напряжение – самым большим недостатком суперконденсаторов является низкое рабочее напряжение – в большинстве случаев оно не превышает значения 2,8 – 5,5 В. Это ограничение связано с внутренней структурой – материала и электролита. Если в случае аккумуляторов последовательное соединение отдельных ячеек в блоки является классическим методом увеличения выходного напряжения, то в суперконденсаторах это связано с резким уменьшением эквивалентной емкости, более того – часто требует использования выравнивания напряжений, чтобы предотвратить повреждение одного из них из-за слишком большой разницы в емкостях (что неизбежно при довольно большом производственном допуске).

Диапазон рабочих температур – некоторые суперконденсаторы адаптированы для работы в широком диапазоне температур окружающей среды. В то время как большинство аккумуляторных батарей имеют значительно заниженную эффективную емкость при низких температурах, суперконденсаторы могут работать даже в морозах до -40 ° C. Большинство ионисторов также хорошо справляются с повышенными температурами окружающей среды, вплоть до +85 ° C.

Цена – современные суперконденсаторы по-прежнему относительно дороги в производстве, а это означает что использование перезаряжаемых или одноразовых батарей может оказаться экономической необходимостью. Стоимость резко возрастает, особенно на миниатюрные конденсаторы для сборки SMD с очень большой емкостью.

Ионистор — устройство, применение, технические параметрыТипичная разрядная характеристика суперконденсатора

Характеристики разряда – одним из наиболее важных различий между батареями и конденсаторами является форма их характеристик разряда по напряжению. В случае батарей напряжение медленно падает в течение длительного периода времени до тех пор, пока не будет достигнут определенный критический диапазон, выше которого происходит резкое падение, ведущее к глубокой разрядке – если устройство не отключится раньше. Примеры характерных форм для популярных типов батарей показаны на рисунке. Для суперконденсаторов характеристика разряда изначально нелинейная, потому что падение напряжения на сопротивлении ESR, которое изменяется со временем, накладывается на постепенное изменение напряжения, что вызвано уменьшением количества электрического заряда, накопленного в конденсаторе.

Ионистор — устройство, применение, технические параметрыПримеры форм разрядных характеристик для популярных типов аккумуляторов

Разновидности суперконденсаторов

Где применяется освещение искусственное

Ионисторы делятся на три вида:

  1. Идеальный ионистор. Название было присвоено ионному конденсатору, в котором электроды из углерода поляризовались на 100%. При полном отсутствии электрохимических процессов энергия накапливается благодаря ионному переносу электронов с одного на другой электрод. Электролитом в «идеальных» ионисторах служат растворы основания KOH и серной кислоты H2SO4.
  2. Гибридные ионисторы – это конденсаторы со слабо поляризуемыми электродами. Скопление энергии в ДЭС происходит на поверхности одного из электродов.
  3. Псевдоионисторы обладают высокой удельной ёмкостью. На поверхности электродов происходят возвратные электрохимические реакции.

Ионистор — устройство, применение, технические параметры
Устройство ионистора

Практическое использование ионисторов

Современные модели суперконденсаторов стали использоваться в сферах транспорта и бытовой электроники.

Транспортные средства

С недавнего времени в схему питания электротранспорта всё чаще стали встраивать мощные ионистры.

Тяжёлый и общественный транспорт

На улицах мегаполисов мира стали появляться электробусы. В Москве можно увидеть общественный транспорт, работающий на энергии бортовых ионисторов. Отечественные электрические автобусы вышли на городские маршруты столицы в мае нынешнего года.

На тяжёлых транспортных средствах суперконденсаторы используются как вспомогательный источник питания.

Автомобили

Ведущие производители электромобилей, такие как Тесла и Ниссан, пользуясь международными выставками, представляют каждый раз новые модели, системы питания которых построены на ионисторах. Российский опытный образец Ё-мобиль использует суперконденсатор как основной источник энергии.

Ионистор — устройство, применение, технические параметры
Автомобильный ионистор

Дополнительная информация. На автомобилях, работающих на жидком топливе, стали устанавливать ионисторы для обеспечения лёгкого пуска двигателя в условиях Крайнего Севера.

Ионистор — устройство, применение, технические параметры
Суперконденсатор с АКБ для облегчённого пуска двигателя

Автогонки

Для пропаганды и рекламы автомобилей, работающих на ионисторах, ведущие автоконцерны постоянно проводят автогонки на таких автомашинах. Зрители на таких мероприятиях проявляют большой интерес к перспективе развития электрического индивидуального транспорта.

Бытовая электроника

Суперконденсаторы стремительно ворвались в сферу бытовой электроники. Их можно заметить в блоках резервного питания ноутбуков, смартфонов. Ионисторы встроены в операционные блоки персональных компьютеров. Они предохраняют от потери данных во время аварийных отключений от постоянного источника электроэнергии.

Ионистор — устройство, применение, технические параметры
Ионистор для бесперебойного питания ПК

Принцип работы ионистора

Как уже было сказано, ионистор сильно напоминает конденсатор, но в отличие от него он не имеет диэлектрического слоя вокруг себя. Обкладки представляют собой особые вещества, которые копят заряды противоположных знаков.

Известно, что емкостные характеристики конденсаторов, как и ионисторов, зависят от величины обкладок. Рассматриваемый элемент обладает обкладками из активированного угля или специально подготовленного вспененного углерода. Это обеспечивает повышенную площадь обкладок.

Вам это будет интересно Дифзащита трансформатора

Ионистор — устройство, применение, технические параметры
Простая схема, демонстрирующая принцип работы

Ионистор обладает выводами, которые сепарированы разделителем, помещенным в электролиты. Нужно это для предотвращения вероятных коротких замыканий. Электролиты чаще всего представляют собой кислоты и щелочи в любом приемлемом агрегатном состоянии.

Обратите внимание! При использовании электролитического йода или серебра можно получить качественный ионистор со значительными емкостными характеристиками, способностью работать при низких температурах и малым саморазрядом. Во время протекания электрических и химических реакций часть электронов отделяется от полюсов приспособления и обеспечивает создание положительного заряда

Отрицательно заряженные ионы, которые находятся в электролите, притягиваются этими полюсами со знаком «плюс». В результате получается электрический слой

Во время протекания электрических и химических реакций часть электронов отделяется от полюсов приспособления и обеспечивает создание положительного заряда. Отрицательно заряженные ионы, которые находятся в электролите, притягиваются этими полюсами со знаком «плюс». В результате получается электрический слой.

Ионистор — устройство, применение, технические параметры
Ионистор на плате магнитолы

Сам же заряд сосредотачивается на границах углеродных полюсов и электролитического вещества. Слой очень тонкий, всего 1-5 нанометров в толщину, а это значительно повышает емкость приспособления.

Как зарядить ионистор

Для зарядки этого элемента нужен источник питания. Если он имеется в схеме, и прибор работает корректно, то ионистор заряжается сам по себе и поддерживает напряжение, передаваемое от аккумулятора или электрической сети. Если необходимо зарядить приспособление самостоятельно, то подойдет схема, описная ниже.

Ионистор — устройство, применение, технические параметры
Пример подключения для зарядки

Прибор запитывают от 12-вольтного адаптера. Затем используется стабилизатор напряжения и тока для регулирования 5,5 В для зарядки элемента. Это напряжение подается на конденсатор через полевой MOSFET-транзистор, который действует в роли переключателя. Он замыкается только тогда, когда напряжение в ионисторе падает до 4,8 В.

Важно! Если напряжение повышается, то транзистор размыкается, и зарядка прекращается

Принцип действия

Принцип действия ионистора похож с обычным конденсатором. Но эти приборы различаются применяемыми материалами. Обкладки делаются из пористого материала, который представляет собой отличный проводник. Это позволяет увеличить емкость устройства. В качестве диэлектрика применяется электролит, что позволяет уменьшить расстояние между обкладками и повысить емкость.

В суперконденсаторе заряд накапливается в результате формирования двойного электрического слоя на электроде при адсорбции ионов из электролитов.

В основе принципа работы – разложение разности потенциалов к токовыводам. При этом на катоде создаются отрицательные ионы, а на аноде – положительные. Сепаратор пропускает ионы электролита и предотвращает короткое замыкание между электродами. Электричество сохраняется статическим способом. В процессе заряда-разряда отсутствуют реакции электрохимического типа.

Суперконденсаторы способны накапливать большое количество энергии за короткий промежуток времени, что позволяет уменьшить время для подзарядки приборов.

Современные ионные аккумуляторы могут отдавать только 60 % электроэнергии, израсходованной на их зарядку. У суперконденсаторов данный показатель превышает 90 %. Другим важным преимуществом является большой ресурс. У многих видов аккумуляторов уменьшение емкости происходит после нескольких сотен циклов разряда – разряда. А ионисторы выдерживают до миллиона циклов без нарушений.

Конструкции элементарных ячеек позволяют создать модули различных размеров и любого напряжения. Устройства могут быть выполнены с охлаждением разного типа – воздушного, водяного и естественного.

Ионистор — устройство, применение, технические параметры

Краткие сведения о компании VINATech

Качество элементов питания (аккумуляторов, суперконденсаторов, конденсаторов) практически полностью определяется качеством материалов и соблюдением технологий. По этой причине к новичкам на этом рынке относятся настороженно. Такое же отношение может возникнуть и к VINATech, поэтому необходимо сказать несколько слов о данном производителе.

Южнокорейская компания VINATech только сейчас выходит на российский рынок, хотя в глобальном масштабе является одним из лидеров отрасли. С момента основания в 1999 году VINATech остается инновационным производителем. К настоящему времени компания успела зарегистрировать 183 патента, относящихся к конструктивным особенностям суперконденсаторов, используемым материалам и технологиям производства.

В 2002 году VINATech успешно завершила разработку собственной технологии углеродных нанотрубок CNF(Carbon Nano Fiber), после чего быстро наладила выпуск суперкондесаторов, гибридных конденсаторов и модулей под общим наименованием Hy-Cap.

С 2011 года компания VINATech запустила производство профильной продукции: элементов топливных ячеек, угольных фильтров и прочего.

Рассмотрим более подробно технологии и особенности элементов питания, предлагаемых компанией.

Принцип действия и характеристики

Ионисторы, как и аккумуляторы с конденсаторами, имеют несколько рабочих параметров. Все изготавливаемые ионисторы, характеристики которых не сильно отличаются, классифицируются по нескольким параметрам:

  • емкость (измеряется в Фарадах);
  • максимально допустимый ток заряда (измеряется в Амперах);
  • номинальное напряжение (измеряется в Вольтах);
  • внутреннее сопротивление (измеряется в Омах).

Во время протекания электрохимической реакции небольшое количество электронов отделяется от электродов, которые получают положительный заряд. Отрицательно заряженные ионы в электролите притягиваются электродами, которые образуют электрический слой. Заряд в элементе накапливается и хранится на границе контакта углеродного электрода и электролита.

Маркировка и область применения

Специальной маркировки ионисторовые конденсаторы на схеме или на корпусе не имеют. Определить, что конкретный элемент является ионистором, можно косвенным образом: большой заряд, небольшие размеры и малое рабочее напряжение являются отличительными признаками ионисторов. Если на корпусе или на схеме будет обозначен элемент с емкостью 1 Фарада и номинальным напряжением, например, 5 вольт, то нет сомнений, что это ионистор. Электролитических конденсаторов с такими параметрами не существует.

Первый советский образец этого элемента был разработан и запущен в производство в 1978 году с маркировкой К58−1. В дальнейшие годы его конструкция улучшалась и появились ионисторы с маркировкой К58−15 и К58−16.

Ионистор — устройство, применение, технические параметры

Отраслей техники и науки, где применяют ионисторы, не так уж и много. Чаще всего их применяют в цифровой технике в роли автономного или резервного источника питания. Он запитывает микросхемы памяти, электронных часов, CMOS-чипы и микроконтроллеры различных устройств при отключении внешнего источника электропитания. Определенное время сохраняются все текущие настройки (дата, время, сохраненные частоты радиостанций и т. п. ) при выключении или замене батареек.

Есть данные, что планировалось применение ионистора и при создании так называемой гаусс-пушки, работа которой основана на нестандартном для вооружения физическом принципе — электромагнетизме. Насколько оказались удачными и были ли они реализованы, является неизвестным для широкой публики. Такая информация составляет или коммерческую, или государственную тайну.

Рекомендации по зарядке

Ионистор — устройство, применение, технические параметрыРазные производители для своих ионисторов с аналогичными параметрами прилагают практически одинаковую инструкцию по их зарядке: используется исключительно источник постоянного тока для зарядного устройства, величина тока и напряжение которого зависит от конкретного образца элемента. В зависимости от его внутреннего сопротивления и на основе формул Q=C*U и Q=I*t (где Q — заряд, C — емкость, U — напряжение, I — сила тока и t — время) вычисляется напряжение, сила тока и время, необходимые для полной зарядки конкретного ионистора.

Достоинства и недостатки

Положительных качеств у ионисторов достаточно, чтобы они приобрели определенную популярность. Но и негативных качеств немало, поэтому элементы и не приобрели широкого применения в быту, на производстве и транспорте. Из плюсов можно отметить:

  • меньший срок зарядки элемента по сравнению с аккумуляторами;
  • больше количество циклов зарядки и разрядки без значительной потери номинальных характеристик;
  • простое устройство зарядного устройства;
  • сравнительно малый вес и габариты;
  • диапазон рабочих температур от -40 градусов по Цельсию до +70 градусов по Цельсию.

Недостатков меньше, но они существенные:

  • относительно высокая цена;
  • малое номинальное напряжение (последовательное соединение нескольких элементов иногда помогает решить эту проблему);
  • энергетическая плотность меньше, чем у аккумуляторов (при параллельном соединении в некоторых случаях удается решить эту проблему);
  • выход из строя без возможности восстановления при превышении верхнего предела рабочей температуры.

Как зарядить ионистор

Для зарядки этого элемента нужен источник питания. Если он имеется в схеме, и прибор работает корректно, то ионистор заряжается сам по себе и поддерживает напряжение, передаваемое от аккумулятора или электрической сети. Если необходимо зарядить приспособление самостоятельно, то подойдет схема, описная ниже.

Ионистор — устройство, применение, технические параметры
Пример подключения для зарядки

Прибор запитывают от 12-вольтного адаптера. Затем используется стабилизатор напряжения и тока для регулирования 5,5 В для зарядки элемента. Это напряжение подается на конденсатор через полевой MOSFET-транзистор, который действует в роли переключателя. Он замыкается только тогда, когда напряжение в ионисторе падает до 4,8 В.

Важно! Если напряжение повышается, то транзистор размыкается, и зарядка прекращается

2018: Выход на рынок

Ионистор

Холдинг GS Group 25 мая 2021 года объявила о выходе на рынок решений для электроэнергетики с портфелем продуктов под брендом GS Electric. Флагманский продукт представленного направления бизнеса — суперконденсатор на базе собственных инновационных разработок, произведенный из российских компонентов. По данным GS Group, компания уже инвестировала в разработку технологий, лежащих в основе устройства, более 200 млн рублей.

Ионистор — устройство, применение, технические параметры
Суперконденсатор GS Electric

GS Group разрабатывает и производит суперконденсаторы под брендом GS Electric с двойным электрическим слоем в инновационном кластере «Технополис GS» (инвестиционный проект холдинга в г. Гусеве Калининградской области). Это устройство — результат многолетних научно-исследовательских и опытно-конструкторских работ предприятия «Наноуглеродные материалы» (НУМ) в составе «Технополиса GS».

По сравнению с другими суперконденсаторами, представленными на отечественном рынке, скорость отдачи энергии устройств под брендом GS Electric — 0,3 секунды — в 3,5 раза выше. Это достигается благодаря ноу-хау предприятия НУМ: в основе суперконденсаторов — наноуглеродный материал в виде углеродной ткани, пояснили в GS Group. Разработка позволяет аккумулировать больший заряд электроэнергии по сравнению с аналогичными устройствами, в которых применяется углеродный порошок. Первые образцы суперконденсаторов GS Electric могут обеспечивать кратковременные токовые значения в диапазоне до 700 Ампер, утверждают в компании.

Все компоненты суперконденсаторов разрабатываются и производятся в России из отечественного сырья и имеют невысокую себестоимость. В конструкции суперконденсаторов GS Electric используются водные электролиты — экологичные, пожаро- и взрывобезопасные — в отличие от органических, которые применяются в большинстве представленных на мировом рынке устройств. Благодаря этому суперконденсаторы безопасны для здоровья людей и окружающей среды: их можно использовать в людных местах, в том числе в учреждениях здравоохранения, пассажирском и коммерческом транспорте, — утверждают в GS Group.

Среди потенциальных заказчиков суперконденсаторов GS Electric — производители электрического и гибридного транспорта, предприятия, использующие источники аварийного и бесперебойного питания (больницы, телекоммуникационные компании), домохозяйства и социальные объекты. Устройства востребованы у производителей систем электрогенерации на базе возобновляемых источников энергии, генерирующих компаний, а также электросетевых организаций для выравнивания графиков нагрузки потребителей электроэнергии. Большой потенциал — у сегмента электрического и гибридного транспорта, оценили в компании.

Мы рады представить на рынке наработанные за несколько лет компетенции в области электроэнергетики. Бренд GS Electric объединит инновационные разработки GS Group в сфере накопления и сохранения электрической энергии, а также системы внутреннего и уличного освещения, которые производит (в составе «Технополиса GS»), и другие смежные направления. В течение двух лет мы запустим в «Технополисе GS» опытное мелкосерийное производство линейки суперконденсаторов GS Electric различной емкости и назначения, а также сопутствующего оборудования (зарядных устройств в разных форм-факторах, адаптеров и прочего). Для коммерциализации направления бизнеса GS Group готов инвестировать в партнерские проекты с предприятиями, развивающими технологии и производящими оборудование на основе суперконденсаторов и другие смежные решения, — заявил Андрей Безруков, директор по стратегическим проектам и коммуникациям GS Group.

Советские бумажные конденсаторы.

Диэлектриком в бумажных конденсаторах служит тонкая, хорошо пропитанная изоляционным составом
бумага,а проводящими электродами (обкладками) — тонкая металлическая фольга.
Эти конденсаторы применялись во всех видах радиотехнической, электронной и измерительной аппаратуры.
Они использовались в качестве развязывающих, разделительных, блокировочных и фильтрующих элементов
в различных цепях с постоянным и переменным(низкочастотным)напряжением.
Бумажные конденсаторы выпускались в разнообразном конструктивном оформлении, на различные номинальные
емкости и напряжения.
Наиболее широко использовались конденсаторы типов КБ (конденсаторы бумажные),
КБГ(конденсаторы бумажные герметизированные), БМ(бумажные малогабаритные),
БГМ(бумажные герметизированные малогабаритные).

Конденсаторы типа КБ.

Конденсаторы этого типа оформлены в цилиндрических бумажных корпусах
различной длины и диаметра(в зависимости от емкости и напряжения)
и имеют проволочные выводы.
Они рассчитаны на работу в интервале температур от -40 до +60 и выпускались
на номинальную емкость от 4700 пф до 0,5 мкф с допустимыми отклонениями ± 10 и ± 20%
и рабочие напряжения 200, 400, и 600 в.

Сопротивление изоляции у этих
конденсаторов в нормальных условиях (при температуре +20) составляет 500 —
2000Мом(большее сопротивление у конденсаторов с меньшей емкостью).
При температуре +60 сопротивление изоляции уменьшается у них в несколько
раз.
Выпуск этих конденсаторов был прекращен более 30 лет назад.

Ионистор — устройство, применение, технические параметры

Конденсаторы типа КБГ.

Конденсаторы этого типа выпускались на номинальную емкость от 470пф до 2мкф
с допустимым отклонениями ± 5, ± 10, ± 20% и рабочие напряжения 200, 400, 600,1500 вольт.
Они расcчитаны на работу в интервале температур от -60 до +70.
Сопротивление изоляции не менее 10000 Мом для конденсаторов с емкостью до
0,2 мкф и не менее 2000 Мом * мкф для конденсаторов с большей емкостью.

По конструктивному оформлению конденсаторы типа КБГ разделяются на следующие
четыре вида: КБГ-И( в цилиндрических керамических или стеклянных корпусах),
КБГ-М (в цилиндрических металлических корпусах);
КБГ-МП( в плоских металлических прямоугольных корпусах),КБГ-МН( в нормальных металлических корпусах).

Конденсаторы КБГ-И и КБГ-М выпускались на рабочее напряжения 200, 400, 600 вольт.
Последние изготовлялись в двух вариантах: КБГ-М1, у которых один проволочный вывод изолирован
от корпуса, а другой соединен с ним, и КБГ-М2 с двумя изолированными от корпуса проволочными
выводами.

Конденсаторы КБГ-МП и КБГ-МН рассчитаны на те же рабочие напряжения и еще,
кроме того, на напряжения 1000 и 1500 вольт. Они изготовлялись с одним, двумя или тремя
изолированными от корпуса лепестковыми выводами и выводом, соединенном с корпусом.

Конденсаторы типа БМ.

Эти конденсаторы предназначались для использования «малогабаритной аппаратуре»(по тем временам, конечно)
Они заключены в небольшие металлические корпуса цилиндрической формы и снабжены проволочными
выводами.

Изготовлялись такие конденсаторы на номинальную емкость от 510 пикофарад, до 0,05 микрофарад,
с допускаемым отклонением ± 10 и ± 20% и рабочие напряжения 150, 200 и 300 вольт.

На главную страницу

Использование каких — либо материалов этой страницы,
допускается при наличии ссылки на сайт «Электрика это просто».

Практическое использование ионисторов

Современные модели суперконденсаторов стали использоваться в сферах транспорта и бытовой электроники.

Транспортные средства

С недавнего времени в схему питания электротранспорта всё чаще стали встраивать мощные ионистры.

Тяжёлый и общественный транспорт

На улицах мегаполисов мира стали появляться электробусы. В Москве можно увидеть общественный транспорт, работающий на энергии бортовых ионисторов. Отечественные электрические автобусы вышли на городские маршруты столицы в мае нынешнего года.

На тяжёлых транспортных средствах суперконденсаторы используются как вспомогательный источник питания.

Автомобили

Ведущие производители электромобилей, такие как Тесла и Ниссан, пользуясь международными выставками, представляют каждый раз новые модели, системы питания которых построены на ионисторах. Российский опытный образец Ё-мобиль использует суперконденсатор как основной источник энергии.

Ионистор — устройство, применение, технические параметры
Автомобильный ионистор

Дополнительная информация. На автомобилях, работающих на жидком топливе, стали устанавливать ионисторы для обеспечения лёгкого пуска двигателя в условиях Крайнего Севера.

Ионистор — устройство, применение, технические параметры
Суперконденсатор с АКБ для облегчённого пуска двигателя

Автогонки

Для пропаганды и рекламы автомобилей, работающих на ионисторах, ведущие автоконцерны постоянно проводят автогонки на таких автомашинах. Зрители на таких мероприятиях проявляют большой интерес к перспективе развития электрического индивидуального транспорта.

Бытовая электроника

Суперконденсаторы стремительно ворвались в сферу бытовой электроники. Их можно заметить в блоках резервного питания ноутбуков, смартфонов. Ионисторы встроены в операционные блоки персональных компьютеров. Они предохраняют от потери данных во время аварийных отключений от постоянного источника электроэнергии.

Ионистор — устройство, применение, технические параметры
Ионистор для бесперебойного питания ПК

Сравнение положительных и отрицательных сторон

Плотность тока — что это такое и в чем измеряется

Ионисторы стали использовать не только, как преобразователи параметров электрической цепи, но и как поставщики электроэнергии. Они стали широко применяться вместо одноразовых аккумуляторных элементов питания в электронных системах хранения информации.

Обратите внимание! Несмотря на превосходные технические характеристики ионисторов, ими ещё нельзя полноценно заменить аккумулятор на автомобиле. По сравнению с гальваническими элементами и аккумуляторами, ионисторы имеют свои недостатки и преимущества

По сравнению с гальваническими элементами и аккумуляторами, ионисторы имеют свои недостатки и преимущества.

Недостатки

  1. Массовое внедрение ионисторов тормозит их высокая стоимость.
  2. Зависимость напряжения от уровня зарядки конденсатора.
  3. В момент короткого замыкания возникает риск выгорания электродов в ионисторах большой ёмкости при крайне низком ВС.
  4. Высокий показатель саморазряда суперконденсаторов ёмкостью в несколько фарад.
  5. Небольшая скорость отдачи энергии, в отличие от обычных конденсаторов.

Достоинства

  1. Возможность устанавливать максимально большой ток зарядки и получать разряд той же величины.
  2. Высокая стойкость к деградации. Многочисленные исследования показали, что даже после 100 тыс. циклов заряда-разрядки у ионисторов не наблюдалось ухудшение характеристик.
  3. Оптимальное внутреннее сопротивление не допускает быстрый саморазряд, не приводит к перегреву устройства и его разрушению.
  4. В среднем ионистор может прослужить около 40 тыс. часов при минимальном снижении ёмкости.
  5. Ионистор обладает небольшим весом, в отличие от электролитических конденсаторов аналогичной ёмкости.
  6. Ионистор отлично функционирует и в мороз, и в жаркое время года.
  7. Достаточная механическая прочность позволяет устройству переносить значительные нагрузки.
Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: