Измерение сопротивления изоляции кабеля

Содержание

Как померить сопротивление изоляции кабеля

Проверка одножильного провода наиболее проста и занимает около минуты. Щупы помещают на броню и на жилку, пускают напряжение. При отсутствии брони щуп ставят на заземлительную клемму. Показания менее 0,5 МОм указывают на пробивание изоляционного материала. Такой кабель к эксплуатации не годен.

У многожильных элементов проверке подлежит каждая жилка. Пока проверяется один провод, остальные кладутся вместе в жгут. При необходимости протестировать заземление в жгут помещают и соединенный с заземляющей шиной провод. Броня, если она присутствует, также присоединяется к жгутовой конфигурации.

Измерение сопротивления обмоток машин (электродвигателей) и аппаратов

Для того чтобы замерить сопротивления обмоток в различных аппаратах при помощи мегаомметра, необходимо следовать следующему алгоритму действий:

  1. Обесточивание двигателя. Это необходимо для повышения безопасности проведения работ.
  2. Открытие крышки двигателя со всеми выводами использующихся обмоток.
  3. Установка напряжения для тестирования. Если двигатель эксплуатируется при напряжении до 1000 В, для проверки достаточно установить показатель в 500 В.
  4. Прикрепление одного щупа на корпус моторного отсека, другого – к имеющимся на устройстве к одному из выходов.

Измерение сопротивления изоляции кабеля

Также дополнительно необходимо убедиться в правильности соединения обмоток. Это можно сделать посредством подключения щупов парами.

Методы и приборы для проверки

Для того чтобы измерить величину сопротивления покрытия проводника, применяется специализированный прибор – мегаомметр. Для домашних электросетей, номинал которых колеблется в рамках 220-380 В, процедура осуществляется в пределах 500 В. при этом минимальное значение измеряемого показателя не должно быть меньше 500 кОм, или 0,5 МОм. В противном случае, это будет означать, что изоляция нарушена и требуется замена проводника в данной части цепи.

Сопротивление электросети в частном доме замеряется либо между токонесущими проводниками, либо между каждым конкретным проводом и контуром заземления. Существуют следующие варианты замеров:

  1. Фаза – рабочий ноль.
  2. Фаза – заземляющий контур (РЕ).
  3. Фаза – фаза.
  4. Рабочий ноль – контур заземления (РЕ).

Такой универсальный прибор, как мультиметр, также имеет возможность измерения сопротивления. Однако функция предназначена для снятия показаний самой электрической цепи, а не изоляционной оболочки проводника. Поэтому в рассматриваемом случае он неприменим.

Видео описание

Видео-инструкция о том, как измерить сопротивление изоляции мегаомметром:

Инструкция проведения замеров

Для того чтобы измерить сопротивление оболочки домашней проводки, необходимо следовать следующей инструкции:

  • Провесит визуальный осмотр сети.
  • Отключить все приборы из розеток, выключить УЗО и автоматы.
  • Выводы подсоединяются к фазе и нулю вводного щитка, проводится замер.
  • Далее все группы проверяются по отдельности.
  • Перед переходом к измерению последующей группы предварительно снимается заряд с омметра.

При измерении сопротивления изоляции домашней электропроводки показания должны стремиться к краю бесконечности шкалы прибора. Минимально приемлемая величина – 0,5 МОм. Если меньше, значит, возникла утечка тока, потребуется замена проводника.

Видео описание

Видео-пример проверки сопротивления изоляции электропроводки в доме:

Коротко о главном

Сопротивление изоляционной оболочки провода определяет уровень защиты от пробоя электрического тока. Частота измерения параметра подчиняется нормативам ПТЭЭП, ПОТ и ГОСТ, в зависимости от условий эксплуатации и характеристик электросетей. Замеры сопротивления домашней сети позволяют вовремя обнаружить ток утечки и предотвратить разрушительные последствия.

Пробой тока может происходить как в старых проводниках – по причине естественного обветшания оболочки, так и в новых – прежде всего в силу механических повреждений в ходе неаккуратного монтажа. Среди самых распространенных причин уменьшения сопротивления изоляции выделяются следующие:

  • Некачественное покрытие.
  • Повреждения при установке.
  • Разрушения при отделке стен.
  • Перегрев при большой нагрузке на сеть.
  • Воздействие естественных факторов окружающей среды.
  • Длительная эксплуатация.

Составные элементы протокола

Документ заполняется с одной стороны листа. В верхней его части слева прописывается полное наименование исполнителя замера с адресными данными. Также необходима информация того же формата о заказчике. Ниже в бланке расположено название договора. Рядом с ним ставится номер документа, заносимый в регистры. Здесь же ставится дата постановки подписи.

Для удобства предоставления информации конкретные данные о кабелях и их проводимости, согласно проведенным измерениям, представляются в виде двух таблиц. Первая имеет следующие графы:

  • Порядковый номер.
  • Название присоединения.
  • Марка кабеля, количество жил, их сечение. По возможности нужно указывать, имеется ли на жилах кабеля изоляция и из какого материала состоит проводник (по умолчанию подразумевается медь, но есть и варианты проводников с внешней медной оболочкой, а внутренним содержанием из алюминия). Если исследуется на сопротивление провод, то тоже нужно указать, сколько у него жил, изолирован ли он.
  • Сопротивление изоляции в жиле L–N.
  • Сопротивление изоляции в L–PE.
  • Сопротивление изоляции в N–PE.
  • Заключение о соответствии. Здесь имеется в виду удовлетворение требованиям ПУЭ п. 1.8.37 (7-е изд.) для электропроводок и ПУЭ п. 1.8.40 (7-е изд.) для кабельных линий.

Вторая описывает использующееся при замерах оборудование и состоит из столбцов с такими сведениями, как:

  • порядковый номер;
  • название прибора;
  • тип;
  • заводской номер;
  • диапазон доступных измерений;
  • основная погрешность;
  • номер свидетельства;
  • дата последней проверки;
  • дата очередной проверки прибора.

В обеих таблицах может быть заполнена как одна, так и несколько строк. Замеры совсем без оборудования проводиться не могут, поэтому заполнение второй таблицы при существовании документа обязательно. В самом конце таблиц обязательно указывается нормативный документ (ГОСТ, ПУЭ, СаНПиН, ПТЭЭП, инструкций РД и СО. и пр.), на соответствие которому была проверена изоляция конкретной однофазной цепи.

Исходя из данных таблиц и информации, встречающейся в документах, должен быть сделан вывод: соответствует изоляция проводника заявленным требованиям или нет. Он формулируется в письменном виде, в специальной графе «Заключение». В бланке для этого предусмотрена всего одна строка, так как достаточно будет одного слова или предложения «соответствует» либо «не соответствует».

Почему необходимо регулярно проводить замер сопротивления изоляции кабелей?

После монтажа и при эксплуатации кабелей и проводов замер сопротивления изоляции проводят для того, чтобы выявить слабые места и своевременно ликвидировать повреждения. Среди факторов, которые влияют на состояние изоляции проводов можно назвать такие, как неправильная эксплуатация, износ, погодные условия и многие другие. Регулярное и своевременное проведение замеров сопротивления изоляции позволяет избежать аварийных и чрезвычайных ситуаций, несчастных случаев, которые влекут за собой простои на производстве и представляют опасность для здоровья и жизни людей.

Популярные статьи  Штробление стен под проводку

Замер сопротивления изоляции проводится при помощи специального прибора – мегомметра, который внесен в Госреестр СИ. Для быстрой ликвидации проблемы и восстановления работы электроустановок, замер сопротивления изоляции может выполняться штатным электриком предприятия. Но если необходимы подтверждающие документы для контролирующих органов и проверка сопротивления изоляции является плановой, то необходим вызов электролабратории. После окончания испытаний изоляции специалисты электролаборатории нашей компании выдают заключение, в котором может быть указание о замене, ремонте либо подтверждение соответствия изоляции всем нормам и требованиям.

Основные типы и марки приборов мегаомметров из моей практики (устройство и принцип работы)

Мегаомметр ЭСО-210

4. Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой — трансформатор, преобразующий переменное напряжение в постоянное.

Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».

Шкала «I» — нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.

Шкала «II» — верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.

Шкала «IIx10» — аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.

В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.

При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.

Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.

Мегаомметр sonel mic-2510

Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом «энтер» и всё – следи за показаниями и не подпускай никого под напряжение.

Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.

Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.

Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм — впечатляющая величина.

Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.

Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.

В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.

Часто задаваемые вопросы

На вопросы отвечает ведущий специалист электролаборатории компании ООО «Альтернатива»Еремин А. Ю.:

Проводит ли Ваша электролаборатория измерение сопротивления изоляции?

— Да. Это непременный вид испытаний, которые мы проводим на объектах. Дело в том, что испытание цепи фаза-ноль дает оценку сочетаниям подключенных
автоматов и сечений,
отходящих от них электролиний, а выявление сопротивления изоляции дает оценку состоянию самих проводов, кабелей

Это важно

— Диэлектрики, включенные в состав изоляции кабелей, значительно различаются по физическим свойствам, следовательно, и допустимым режимам работы.
Часть из них не выдерживает работы во влажной среде, часть — в помещениях с повышенным или пониженным температурным режимом, а так же есть те, что
не предназначены для работы под воздействием механических нагрузок. В случае, когда провод по своим характеристическим данным не предназначен для работы в окружающих его
условиях, он выходит из строя быстрее расчетного срока эксплуатации.

Правильно подобранный тип проводов и кабелей устраняет возможность быстрого износа?

— Скажем, сокращает. Соответствие характеристик провода условиям работы не является 100% панацеей. Ничто не вечно. Со временем изоляция теряет свои
рабочие качества.

Какова периодичность проведения данного вида измерений?

— В соответствии с нормативно-технической документацией сопротивление изоляции измеряется:

  • 1 раз в 6 месяцев — для мобильных электроустановок (передвижных, переносных);
  • 1 раз в год — для системы электропроводки освещения в помещениях с повышенной опасностью (влажностью, местах хранения вредных веществ, или легковоспламеняющихся
    материалов), во внешних электроустановках, лифтов, подъемных кранов, электрических плит;
  • 1 раз в 3 года — для остальных проводов, кабелей и оборудования.

Приведите пример работы.

— В соответствии с нормативно-технической документацией сопротивление изоляции измеряется:

  • Последовательность для однофазной линии: фаза-ноль и ноль-земля;
  • Последовательность для трехфазной линии: фаза-фаза (во всех сочетаниях), фаза-ноль, ноль-земля.

На большинстве испытуемых объектов нормами предусмотрено сопротивление изоляции, превышающее пороговый показатель в 0,5 МОм. При этом сопротивление в 
2-10 Мом, — является поводом для более тщательной проверки.

А в случае выявления более низкого показателя сопротивления?

— Если сопротивление ниже, мы проводим дополнительные работы: определяем участок неоднородности электрической цепи, то есть место повреждения изоляции,
и оперативно устраняем его.

— Именно. Показатели сопротивления между кабельными жилами, которые повреждены, помогают с выбором лучшего метода определения расстояния до точки
пробоя. Это достаточно обширная тема, требующая отдельной статьи.

Популярные статьи  Разъединители рлнд: что это такое, расшифровка аббревиатуры, устройство и применение

Где в итоге фиксируются результаты испытания?

— Результаты должны быть внесены в технический отчет, он в свою очередь предоставляется органам контроля (пожарная инспекция, МЧС и прочие)

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Измерение сопротивления изоляции кабеля

Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Если показания больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Если необходимо проверить многожильный кабель, тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

Измерение сопротивления изоляции кабеля

Если жил много, перед тем как пользоваться мегаомметром, жилы зачищают от изоляции и скручивают в жгут

Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут

При образовании жгута важно обеспечит хороший контакт

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

https://youtube.com/watch?v=jOaLpf4g1Sk

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства.
    Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Измерение сопротивления изоляции кабеля

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
На отображаемые данные влияет равномерность вращения динамо-машины.
Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Советы по работе с мегаомметром:

  • некоторые путаются со шкалами прибора М4100. Где расположена шкала измерения в мегаомах, а где в килоомах? Чтобы не запамятовать воспользуйтесь подсказкой: мегаом (мОм) как единица измерения выше, чем килоом (кОм), соответственно и ее шкала находится выше!
  • перед измерением очищайте концы жил кабеля от грязи. Грязная изоляция может дать плохие результаты, хотя сам кабель будет исправным;
  • измерительные провода самого мегаомметра должны иметь изоляцию минимум 10мОм. Не используйте непонятные обрезки или куски старых проводов. Вы только ухудшите показания измерений и не узнаете точных результатов;
  • когда проверяете кабель, в цепи которого присутствует счетчик, обязательно отсоединяйте все фазные жилы и нулевую жилу от корпуса или шинки. Иначе из-за прибора учета, у вас будут показания мегаомметра, как будто жилы кабеля дают короткое замыкание между собой;
  • если вы последовательно проводите измерения отдельных участков проводки, всегда отключайте нулевые жилы от общей шины. В противном случае получите одинаковые замеры на всех кабелях. И эти результаты будут равны худшему сопротивлению одного из подключенных кабелей;
  • если кабель протяженный (более 1 км), с большой емкостью, то снимать остаточный заряд необходимо с помощью специальной штанги. А то можно создать большой ”бум” прямо перед глазами;
  • при измерениях в сетях освещения выкручивайте лампочки накаливания со светильников, сами выключатели оставляйте включенными. Для газоразрядных ламп замеры можно проводить не вытаскивая лампочек из корпусов, но с обязательным выкручиванием стартера.
Популярные статьи  Почему выбивает узо при подключении стабилизатора напряжения?

Проверка целостности и фазировки жил кабеля.

Перед включением кабеля в работу производится его фазировка, т.е. обеспечивается соответствие фаз кабеля фазам присоединяемого участка электроустановки. Проверка производится прозвонкой с помощью телефонных трубок или мегаомметра. На основании проверки производится раскраска жил в соответствии с раскраской принятой на данной установке.

Технология «прозвонки» с помощью телефонных трубок заключается в следующем: один работник подсоединяет свою телефонную трубку к жиле кабеля и оболочке (заземленной части электропроводки), а другой поочередно к жилам кабеля со своей стороны, пока не дойдет до той жилы, к которой подключился первый работник. При этом устанавливается телефонная связь между работниками и они могут договориться о порядке проверки другой жилы. На проверенные жилы навешивают временные бирки с соответствующей маркировкой. Проверка жил «прозвонкой» будет успешной, если исключить возможность образования обходных цепей. Во избежание ошибок необходимо убедиться, что связь возможна только по одной жиле; для этого подсоединяют трубку к каждой из оставшихся жил и убеждаются, что связи по ним нет. Для «прозвонки» используют низкоомные телефонные трубки, а в качестве источника питания — батарейку от карманного фонаря.

После предварительной прозвонки перед включением кабельной линии в работу производится фазировка ее под напряжением. Для этого с одного конца кабеля подается рабочее напряжение, а с другого конца производится проверка соответствия фаз измерениями напряжений между одноименными и разноименными фазами. Газировка производится вольтметрами (в сетях до 1кВ) или вольтметрами с трансформаторами напряжения, а также с помощью указателей напряжения типа УВН-80, УВНФ и др. (в сетях напряжением выше 1 кВ),

Порядок проведения фазировки в линиях различного напряжения примерно одинаков. Так фазировка кабельной линии с помощью указателей напряжения выполняется в следующей последовательности (см. рис. 1). Проверяется исправность указателя напряжения, для чего щупом трубки без неоновой лампы касаются заземления, а щуп другой трубки подносят к жиле кабеля находящегося под напряжением, при этом неоновая лампа должна загореться. Затем щупами обеих трубок касаются одной жилы находящей под напряжением. Лампа индикатора при этом гореть не должна. После этого проверяется наличие напряжения на выводах электроустановки и кабеля (см. рис. 1в). Данную проверку производят для того, чтобы исключить ошибку при фазировке линии имеющей обрыв (например, из-за неисправности предохранителя). Процесс собственно фазировки состоит в том, что щупом одной трубки указателя касаются любого крайнего вывода установки, например фазы С, а щупом другой трубки — поочередно трех выводов со стороны фазируемой линии (см. рис. 1г). В двух случаях касания (С-А 1 и С-B1) неоновая лампа загорается, в третьем (С-С1) лапа гореть не будет, что укажет на одноименность фаз. Аналогично определяют другие одноименные фазы.

Рис. 1. Последовательность операций при фазировке линии 10 кВ указателем напряжения типа УВНФ.

а, б — проверка исправности указателя напряжения; в — фазировка; г — проверка наличия напряжения на выводах.

Контроль над изоляцией кабелей

Сопротивление изоляции кабеля является одним из основных показателей его работоспособного состояния, поэтому проверочные измерения изоляции электрических и электротехнических сетей являются обязательными. Для каждой отрасли директивными материалами определены периодичность и порядок проведения таких контрольных измерений.

К примеру, измерения сопротивления изоляции электрического оборудования, электрических сетей различного уровня и применения проводят специальными приборами, называемыми мегаомметрами, а измерения сопротивления изоляции линий связи проводят предназначенными для этого кабельными мостами. Указанные приборы имеют высокое выходное напряжение (до 2500 В), что предъявляет особые требования к обеспечению выполнения правил охраны труда и техники безопасности при производстве подобных измерений.

Мегаомметр – специальный прибор для измерения сопротивления изоляции электрических сетей.

В соответствии с действующими регламентными документами, измерения изоляции должны проводиться:

  • для мобильных электроустановок не реже одного раза в 6 месяцев;
  • для наружных электроустановок, кабелей и проводов в особо опасных помещениях не реже одного раза в 12 месяцев;
  • для остальных видов оборудования и сетей не реже одного раза в 36 месяцев.

Иными словами, измерение сопротивления изоляции электропроводки в магазине или в офисе должно проводиться не реже одного раза в 3 года.

По результатам проведенных измерений составляют соответствующий акт, в котором фиксируют полученные данные.

Сравнивая известную норму на сопротивление изоляции электрической сети с полученными результатами измерений, делают вывод о ее работоспособности. Если измеренное сопротивление изоляции постоянному току не соответствует норме, то проверяемая сеть выводится в ремонт до восстановления ее рабочих параметров. Подтверждением окончания ремонтных работ и правомерности ввода сети в эксплуатацию будет являться протокол итоговых послеремонтных измерений сопротивления изоляции.

В связи с тем, что сопротивление изоляции по постоянному току для линий связи нормируется более жестко, то и алгоритм контроля над его состоянием несколько иной. Контрольные измерения этого параметра для линий, не стоящих под избыточным воздушным давлением, проводятся весной, перед началом ремонтного сезона, с тем, чтобы можно было спланировать соответствующие ремонтные работы, если состояние кабельной линии не нормальное.

Ремонт считается законченным, а кабельная линия работоспособной, если итоговые измерения ее параметров подтверждают соответствие сопротивления изоляции участка сети установленной норме (в пересчете на реальную длину).

Методики производства указанных выше измерений имеют некоторые специфические особенности, характерные для силовых сетей и для линий связи. К примеру, при измерении сопротивления изоляции электросети офиса или магазина прибор мегаомметр подключают к измеряемой сети в точках «жила» и «земля», не отсоединяя от нее отводы к розеткам и переключателям.

Сопротивление изоляции линейных элементов линий связи измеряют по схемам «жила-жила» и «жила (все жилы)-земля», предварительно отключив полностью все жилы измеряемой кабельной продукции от любых контактов с аппаратурой. То есть измерение проводят в режиме холостого хода.

Однако перед проведением любых измерений обязательно следует убедиться в отсутствии на измеряемой линии мешающего или опасного напряжения и принять соответствующие меры по защите как измерителя, так и других людей, имеющих доступ к измеряемым цепям. После окончания измерений необходимо снять с измеренных жил остаточный электрический заряд.

В итоге для содержания в исправном состоянии проводного линейного хозяйства и электроустановок достаточно выполнять установленные регламенты и вовремя контролировать такой важный параметр, как сопротивление изоляции постоянному току. Применяя соответствующие нормы, следует помнить о соотношении величины сопротивления изоляции и длины участка. То есть чем длиннее участок проводной линии, тем меньше для него норма по изоляции.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: