Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики

Таблица допустимых погрешностей для коммерческого учета

Для коммерческих приборов учета существует таблица погрешностей.

Класс Напряжение первичной обмотки в процентах от расчетного значения Предел погрешности по току в процентах Предел погрешности по углу
0,2 5 0,75 30
20 0,35 15
100-120 0,2 10
0,5 5 1,5 90
20 0,75 45
100-120 0,5 30

Требования, предъявляемые к классу точности преобразователей, представляют собой диапазоны, в которые погрешности должны укладываться. С увеличением точности уменьшается разброс значений.

Разница между преобразователями с маркировкой «S» и без нее, например, 0,5 и 0,5S заключается в том, что первые не нормируют ниже 5% от расчетного тока.

Токи обратной последовательности это

Ток нулевой последовательности это: Сумма мгновенных значений токов трех фаз трехфазной системы Система нулевой последовательности существенно отличается от прямой иобратной тем, что отсутствует сдвиг фаз. Нулевая система токов по существу представляет три однофазныхтока, для которых три провода трехфазной цепи представляют прямой провод, а обратным проводом служитземля или четвертый (нулевой), по которому ток возвращается.

Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное илидвухфазноеКЗ). Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Ток обратной последовательности, как известно из , появляется при любом несимметричном, а кратковременно и при трехфазном КЗ. Ток нулевой последовательности используется для повышения чувствительности пуска ВЧ-передатчика при КЗ на землю, а пусковое реле фазного тока КА — при симметричных КЗ

Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА

равен геометрической сумме токов трех фаз:

Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0

Зёх фазный ток — это когда фазы а,в,с отстоют друг от друга на 120градусов. Когда три фазы повёрнуты в 1 сторону — ток нулевой последовательности. Такое возникает при однофазных замыканиях на землю в сетях с заземлённой нейтралью. Поэтому применяются ТЗНП — токовые защиты нулевой последовательности для защиты от замыканий на землю — появился ток нулевой последовательности, значит есть замыкание на землю, защита срабатывает. . Токи обратной последовательности — это когда нарушен порядок чередования фаз. Возникают при межфазных замыканиях, для зашиты применяю ТЗОП — токовые защиты обратной последовательности. В двух словах так. Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное или двухфазное КЗ).

Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Токи нулевой последовательности по существу являются однофазным током, разветвленным между тремя фазами и возвращающимся через землю и параллельные ей цепи. В силу этого, путь циркуляции токов нулевой последовательности

резко отличен от пути, по которому проходят токи прямой или обратной последовательности Для практической реализации метода симметричных составляющих необходимо составлять три схемы замещения: прямой, обратной и нулевой последовательностей. Конфигурация этих схем и параметры их элементов в общем случае не одинаковы.

Схема прямой последовательности является той же, что и для расчета тока трехфазного замыкания. Из этой схемы находят результирующую ЭДС и результирующее сопротивление прямой последовательности: и . Началом этой схемы являются точки нулевого потенциала источников питания, концом – место короткого замыкания, к которой приложено напряжение прямой последовательности . Составляющие обратной последовательности возникают при появлении в сети любой несимметрии: однофазного или двухфазного короткого замыкания, обрыва фазы, несимметрии нагрузки.

Составляющие нулевой последовательности имеют место при замыканиях на землю (одно- и двухфазных) или при обрыве одной или двух фаз. В случае междуфазного замыкания составляющие нулевой последовательности(токи и напряжения) равны нулю.

Этот метод используют многие устройства РЗиА. В частности, принцип работы трансформатора тока нулевой последовательности основан на сложении значений тока во всех трех фазах защищаемого участка. В нормальном(симметричном) режиме сумма значений фазных токов равна нулю. В случае возникновения однофазного замыкания, в сети появятся токи нулевой последовательности и сумма значений токов в трех фазах будет отлична от нуля, что зафиксирует измерительный прибор (например, амперметр), подключенный ко вторичной обмотке трансформатора тока нулевой последовательности.

Для трехфазных транспозированых ЛЭП результат этого преобразования — точная матрица собственных векторов (матрица модального преобразования) . Она одинакова как для тока, так и для напряжения.

Трансформаторы тока разных производителей

Рассмотрим несколько трансформаторов тока разных производителей:

Трансформаторы тока ТОЛ-НТЗ-10-01

, предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

Популярные статьи  Как установить розетку в подрозетник

Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

Рабочее положение трансформатора в пространстве – любое.

Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

  • класс нагревостойкости «В» по ГОСТ 8865-93;
  • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.

Расположение вторичных выводов:

  • «А» — параллельно установочной поверхности;
  • «В» — перпендикулярно установочной поверхности;
  • «С» — из гибкого провода, параллельно установочной поверхности;
  • «D» — из гибкого провода, перпендикулярно установочной поверхности.

Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики

Требования к надежности

Для трансформаторов установлены следующие показатели надежности:

  • средняя наработка до отказа – 2´105 ч.;
  • полный срок службы – 30 лет.

Виды конструкций измерительных трансформаторов

В зависимости от исполнения, данные устройства делятся на следующие виды:

  1. Катушечные, пример такого ТТ представлен ниже.

    Катушечный ИТТ

Обозначения:

  • A – Клеммная колодка вторичной обмотки.
  • В – Защитный корпус.
  • С – Контакты первичной обмотки.
  • D – Обмотка (петлевая или восьмерочная) .
  1. Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:

Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4.

Рисунок 4. Пример установки встроенного ТТ

Обозначения:

  • А – встроенный ТТ.
  • В – изолятор силового ввода трансформатора подстанции.
  • С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
  1. Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ.

    Шинные ТТ производства Schneider Electric

  1. Разъемными. Особенность данной конструкции заключается в том, что магнитопровод ТТ может разделяться на две части, которые стягиваются между собой специальными шпильками.

Такой вариант конструкции существенно упрощает монтаж/демонтаж.

Схемы токовых цепей

До этого мы рассматривали токовую цепь применительно к одной фазе. На практике это используется крайне редко, потому что даже если взять отдельно три однофазные токовые цепи, они не будут обладать теми свойствами, которыми обладают традиционные схемы типа «звезда», «неполная звезда», «треугольник» и прочие.

Существует множество схем токовых цепей. Каждая из них имеет свои свойства и применима только в определенных электроустановках.

Схема полной звезды

Распространенная схема: трансформаторы тока устанавливаются во всех фазах. В каждой фазе устанавливается защитное реле. А замыкается цепь через один общий провод, называемый «нулевым».

Схема обладает следующими свойствами:

  • В нормальном режиме (при симметричной нагрузке) в схеме протекают токи Ia, Ib, Ic. По закону Кирхгофа, в нулевом проводе ток отсутствует, так как геометрическая сумма векторов фазных токов Ia+Ib+Ic равна нулю;
  • При глухом двухфазном замыкании (например, фаз B и C), наблюдается аналогичная предыдущему случаю картина: в фазе A ток Ia будет отсутствовать, в фазах B и C токи будут в противофазе: Ib = -Ic. Следовательно, их сумма так же будет равна нулю, и ток в нулевом проводе Io будет отсутствовать;
  • При однофазном замыкании появляется составляющая нулевой последовательности Io. Так как она не может быть скомпенсирована, ей деваться некуда — она замыкается (протекает) по нулевому проводу. Отсюда следует важный вывод: нулевой провод является фильтром нулевой последовательности;
  • Так как ток в защитном устройстве равен току в фазе, то коэффициент схемы равен KСХ = 1.

Подводя итог перечисленным свойствам, можно сделать вывод, что схема полной звезды реагирует на любые виды замыканий: при любых междуфазных замыканиях срабатывают защитные устройства в фазных проводах, а при однофазном замыкании — защитное устройство в нулевом проводе.

Схема неполной звезды

Более распространенная схема, чем предыдущая. Отличается от полной звезды отсутствием трансформатора тока цепи одной из фаз. Как правило, в фазе B.

Схема обладает свойствами:

  • В нормальном режиме при симметричной нагрузке ток в нулевом проводе равен геометрической сумме токов двух фаз, в которых установлены измерительные трансформаторы тока: Ia + Ic = -Ib;
  • При двухфазном замыкании между A-B или B-C в нулевом проводе появляется ток, равный -Iа или -Ic. При замыкании А-С в нулевом проводе протекает сумма токов Ia + Ic.
  • При однофазном замыкании фаз A или C, в нулевом проводе так же возникает ток нулевой последовательности поврежденной фазы. При повреждении в фазе B ток нулевой последовательности не возникает.
  • Коэффициент схемы равен KСХ = 1.

Недостатком этой схемы — реакция не на все виды однофазного короткого замыкания. Поэтому такие схемы применяются в сетях с большим сопротивлением при замыканиях на землю, т. е. в сетях 6 — 35 кВ.

Соединение трансформаторов тока в треугольник

Вторичные обмотки трансформаторов тока соединяются последовательно: начало ТТ фазы A — с концом ТТ фазы B, начало ТТ фазы B — с концом фазы C, начало ТТ фазы C — с концом ТТ фазы А. Обмотки защитного устройства подключают к выводам И1 фаз A, B и C и соединяются в звезду.

Рассмотрим, какими свойствами обладает рассматриваемая схема:

  • При симметричной нагрузке и трехфазном коротком замыкании через защитные реле протекает ток, равный разности токов двух фаз, а следовательно, в √3 раз больше фазного и сдвинут на 30°;
  • При двухфазных и однофазных замыканиях величина тока через защитное реле зависит от характера замыкания;
  • На однофазные замыкания на землю данная схема не реагирует;
  • Коэффициент схемы равен KСХ = √3.
Популярные статьи  Измерительные трансформаторы тока — назначение, устройство, виды конструкций

Данная схема реагирует на все виды коротких замыканий, кроме замыканий на землю. Увеличивает чувствительность защиты за счет увеличения тока в реле до 2 крат.

Вид КЗ Поврежденные фазы Токи в фазах Токи в реле
I II III
Двухфазное А, В Ib=-IaIc=0 2Ia Ib -Ia
В, C Ic=-IbIa=0 -Ib 2Ib -Ic
C, A Ia=-IcIb=0 Ia -Ic 2Ic
Однофазное А Ia=IКЗIb и Iс = 0 Ia -Ia
В Ib=IКЗIa и Iс = 0 -Ib Ib
C Ic=IКЗIa и Ib = 0 -Ic Ic

Тороидальные трансформаторы

Промышленность изготавливает и так называемые тороидальные трансформаторы. Один из таких изображен на фото:

Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики

Фотография — тороидальный трансформатор

Преимущества таких трансформаторов по сравнению с трансформаторами обычного исполнения заключаются в более высоком КПД, меньше звуковой дребезг железа при работе, низкие значения полей рассеяния и меньший размер и вес.

Сердечники трансформаторов, в зависимости от конструкции могут быть различными, они набираются из пластин магнитомягкого материала, на рисунке ниже приведены примеры сердечников:

Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики

Сердечники трансформаторов — рисунок

Вот в кратце и вся основная информация о трансформаторах в радиоэлектронике, более подробно разные частные случаи можно рассмотреть на форуме. Автор AKV.

Классификация трансформаторов напряжения

ТНы классифицируются по следующим параметрам:

  • напряжение первичной обмотки (3, 6, 10 … 750кВ)
  • напряжение основной вторичной обмотки (100 В — для однофазных, включаемых между фазами, трехфазных; 100√3 — однофазных, включаемых между фазой и землей
    напряжение дополнительной вторичной обмотки (100В — однофазные в сети с заземленной нейтралью, 100√3 — однофазные в сети с изолированной нейтралью
  • число фаз (однофазные, трехфазные)
  • количество обмоток (двухобмоточные, трехобмоточные)
  • класс точности (0,1 0,2 0,5 1 3 3Р 6Р)
  • способ охлаждения (сухие, масляные, газонаполненные)
  • изоляция (воздушно-бумажная, литая, компаунд, газ, масло, фарфор)

На напряжение 6, 10кВ используют литые ТНы, залитые эпоксидной смолой. Эти аппараты устанавливают в распредустройствах. Они занимают меньшие габариты, по сравнению с масляными. Также к их плюсам стоит отнести меньшее количество ухода за ними.

электромагнитные и емкостные

Если открыть объемы и нормы испытаний электрооборудования на странице ТНов, то можно увидеть, что трансформаторы напряжения там разделяются на электромагнитные и емкостные. В чем же состоит различие этих типов оборудования.

Электромагнитными считаем все ТНы в которых преобразование происходит по принципу, описанному выше (магнитные потоки, ЭДС и так далее). Индукционный ток, в брошюрах западных производителей их называют индуктивными, в противоположность емкостным. По моему всё именно так.

А вот емкостные трансформаторы напряжения, или же всё таки емкостные делители напряжения… Тут история умалчивает. Принцип работы такого оборудования можно понять, если нарисовать схему.

Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики

Вот, например схема ТН марки НДЕ-М. Они выпускаются на напряжение выше 110кВ. Состоит из емкостного делителя и электромагнитного устройства.
Емкостной делитель состоит из конденсаторов С1 и С2. Принцип емкостного делителя в следующем. Напряжение линии Л делится обратно пропорционально величинам емкостей С1 и С2. То есть мы подключаем к С2 наш ТН и напряжение на нем пропорционально входному, которое идет по Л, но гораздо меньше его. Раз рассматриваем НДЕ, то вот табличка величин напряжения для разных классов оборудования.

Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики

Электромагнитное устройство состоит из понижающего трансформатора, реактора и демпфера.

Реактор предназначен для компенсации емкостного сопротивления и следовательно уменьшения погрешности.

Электромагнитный демпфер предназначен для устранения субгармонических колебаний, которые могут возникать при включениях и коротких замыканиях в обмотках ТНа.

Чем выше класс напряжения, тем емкостные трансформаторы напряжения выгоднее своих собратьев. За счет снижения размеров изоляции и материалов.

Конструкция НТМИ

Бак трансформатора НТМИ сварной, круглой формы. Подъем в сборе осуществляется за скобы, расположенные на крышке трансформатора. Внизу расположены пробка для спуска масла, пробка для заливки масла и взятия пробы масла, болт заземления. На крышке бака имеется вводы высокого напряжения (ВН), низкого напряжения (НН), пробка для доливки масла. Для обеспечения герметичности применена маслостойкая резина. Трансформаторы НТМИ-6, НТМИ-10 заполняются трансфоматорным маслом, имеющим пробивное напряжение не менее 40 кВ.

Активная часть состоит из магнитопровода, изготовленного из холоднокатаной электротехнической стали, обмоток, отводов ВН и НН. Обмотки трансформаторов НТМИ-6, НТМИ-10 изготовлены из медных проводов. Вводы ВН и НН наружной установки, съемные, изоляторы проходные фарфоровые.

Сборка трансформаторов НТМИ выполняется тщательно и точно согласно конструкторской документации. Обмотки устанавливаются и крепятся на соответствующих стержнях магнитопровода, после чего выполняется монтаж ярма, электрические соединения и сушка под вакуумом. Перед установкой активной части в бак трансформатора НТМИ, проверяется соединение обмоток, коэффициент трансформации и угловая погрешность сдвига фазных векторов.

После тщательной сушки и проверки моментов затяжки болтовых соединений активная часть устанавливается в бак трансформатора, крепится крышка трансформатора и заполняется маслом.

Испытания

Все трансформаторы НТМИ подвергаются типовым и приемо-сдаточным испытаниям согласно ГОСТ 11677 и нормативной документации.

Пoльзoвaтeли иногда cпpaшивaют пpи пokyпke, oбязaтeльнo ли зaзemлeниe для пpeдcтaвлeнных koнcтpykций. Пacпopт пpибopa дaeт чeтkий oтвeт. В aвтomaтичeckих ceтях oбязaтeльнa нeйтpaль и зaзemлeниe. Cхema пoдkлючeния тpaнcфopmaтopa НТМИ, oбcлyживaниe aгpeгaтa пpeдcтaвлeны пpoизвoдитeлem в инcтpykции.

Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики

Видео: Трансформаторы НТМИ 10

Трансформаторы НТМИ 10 устанавливают в сетях с компенсированной или изолированной нейтралью. Применяется трансформатор НТМИ-10 для измерения линейного напряжения в трехфазных сетях и для питания цепей релейной защиты и автоматики

ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ ТОКА

Современные производители предлагают широкую номенклатуру трансформаторов. Чтобы облегчить выбор была разработана система классификации ТТ по нескольким параметрам.

По назначению.

  • измерительные – комплектуются приборами учета, подключенными к вторичной обмотке;
  • защитные – в состав входят разнообразные реле;
  • промежуточные – основная задача, это преобразование параметров тока первичной электросети и приведение этих значений к величинам пригодным для функционирования внешних потребляющих устройств;
  • многоступенчатые – имеют несколько вторичных обмоток, чем обеспечивают более широкие возможности трансформации;
  • лабораторные – повторяют принципиальную конструкцию многоступенчатых, но обеспечивают более высокий класс точности.
Популярные статьи  Станок для разделки кабеля своими руками

Их установка регламентируется стандартами категорий размещения для электрооборудования ГОСТ 15150-69. В зависимости от модели допускается установка, как на открытом воздухе, так и в распределительном щитке открытого типа (ОРУ).

Внутренние.

Допускается установка только в закрытом помещении (специализированном или с дополнительно обустроенной вентиляцией по ГОСТ 15150-69) в ЗРУ или КРУ (закрытое или комплектное).

Встроенные.

Являются частью конструкции другого электрооборудования. Как правило, для обеспечения дифференциальной защиты общего устройства.

Переносные.

Оборудование для измерений и испытаний электросетей и других электрических устройств. К примеру, лабораторные и измерительные трансформаторы тока.

Специальные.

Используются в качестве электрооборудования на транспорте (морские суда и электровозы) или на производстве (высокочастотные электропечи).

ПО СПОСОБУ УСТАНОВКИ, ТИПУ ОБМОТОК

Проходные.

Такие устройства имеют специфическую конструкцию, позволяющую устанавливать их в стенных проемах или на металлических основаниях. Как правило, такие ТТ используются на старых трансформаторных подстанциях, выполняет функцию проходного изолятора.

Специфика их конструкции состоит в расположении контактов первичной обмотки, один вывод расположен сверху другой снизу.

Опорные.

Монтируются на ровном опорном основании. Отличительной особенностью конструкции является наличие контактов первичной обмотки в верхней части устройства либо по бокам корпуса.

По способу трансформации:

  • одноступенчатые — один коэффициент;
  • многоступенчатые – несколько коэффициентов.

Трансформаторы тока зачастую переделывают (как одно-, так и многоступенчатые), путем изменения числа витков на катушках. Однако при этом существенно снижается коэффициент точности.

По конструкции или наличию первичной обмотки ТТ можно классифицировать на:

Без первичной обмотки: встроенные, шины, разъёмные. Фактически, они состоят из магнитопровода со вторичной обмоткой. Функцию первичной обмотки выполняет стержень высоковольтного ввода электроцепи.

Одновитковые: стержневые и u-образные. Используется на подстанциях промышленных предприятий для подключения устройств учета энергии.

Многовитковые: петлевые, звеньевые. Используются в сложных многофазных сетях для контроля нескольких фаз.

ПО ТИПУ ИЗОЛЯЦИИ

Суть такой классификации состоит определении способа изоляции обмоток.

Согласно ГОСТ 7746-2015, при производстве трансформаторов применяются следующие типы изоляционных материалов:

  1. Твёрдые: фарфор, бакелит, полимерные материалы типа капрона или эпоксидной смолы;
  2. Вязкие — компаунды изоляционных материалов;
  3. Смешанные – бумажно-масляные изоляционные материалы;
  4. Газовые: элегаз или воздух.

Классов трансформаторов тока по напряжению бывает только два — до одного киловатта и более.

Устройство и принцип действия

Конструктивно ТН особо не отличается от других типов преобразующих устройств. Его устройство:

  • магнитный сердечник, шихтованный из пластин электротехнической стали;
  • первичная катушка;
  • одна или две вторичные обмотки;
  • защитный кожух (для конструкций уличного типа).

Внешний вид и схематическое изображение изделия смотрите на рис.1. На картинке изображено устройство с одной (основной) вторичной обмоткой. На некоторых моделях есть дополнительная вторичная обмотка, которая может использоваться, например, для подключения приборов измерения.

Рис. 1. Трансформатор напряжения. Строение

Обратите внимание на то, что между выводами первичных обмоток и вторичными катушками отсутствует гальваническая связь. Это главное отличие измерительных трансформаторов от конструкции обычного понижающего трансформатора

Защитные кожухи изготовляются из разных материалов. В моделях, используемых для обслуживания высоковольтных ЛЭП, применяют диэлектрики, изготовленные из фарфора (рис. 2),

Рис. 2. ТН на 110 кВ

Для охлаждения обмоток таких высоковольтных агрегатов применяют специальные трансформаторные масла.

В сетях средней мощности применяют модели с корпусами на основе эпоксидных смол (рис. 3).

Рис. 3. ТН наружного типа

Трехфазные ТН с нулевыми выводами выполняются на магнитопроводе с пятью стержнями. Такая конструкция защищает обмотки от перегрева, так как при однофазных замыканиях в цепях высоковольтных проводов цепь линий суммарного магнитного потока в самом трансформаторе замыкается по стали сердечника.

Принцип действия также мало отличается от работы силового понижающего трансформатора. Магнитный поток, возникающий в первичной катушке, распространяется по магнитопроводу, вызывая напряжение ЭДС во вторичной обмотке. Величина напряжения зависит от соотношения числа витков в катушках. Поскольку вторичные обмотки состоят из малого количества витков, то и выходное напряжение небольшое (обычно оно не превышает 100 В).

Принцип работы ТН объясняет схема на рисунке 4.

Рис. 4. Принцип работы трансформатора напряжения

Важной задачей при изготовлении трансформаторов данного типа является выполнение требований по достижению необходимых амплитудных и угловых параметров синусоиды, определяющих соответствующий класс точности: 0,5; 1; 3. В эталонных образцах применяется класс точности 0,2

Для измерительных приборов важно чтобы класс точности был максимально высоким. Чем он выше, тем меньшая погрешность измерения прибора.

Точность параметров преобразованных переменных токов зависит от нагрузки. Чем выше нагрузка вторичной цепи, тем больше погрешность трансформатора напряжения (снижается класс точности). Оптимальные параметры напряжения на выходе трансформатора достигаются при номинальных нагрузках. В этом режиме эффективность преобразования тока возрастает по мере приближения к номинальному коэффициенту трансформации.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: