Как рассчитать общее сопротивление, общую силу тока и напряжение на каждом из резисторов?

Содержание

Физические формулы и примеры вычислений

Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторов R1 и R2, можно выделить в определённый ряд:

  • параллельное присоединение определяют по формуле Rэкв. = (R1*R2)/R1+R2;
  • последовательное включение вычисляют, определяя его сумму Rэкв. = R1+R2.

У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.

Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:

  • R1 = 1 Ом;
  • R2 = 2 Ом;
  • R3 = 3 Ом;
  • R4 = 6 Ом;
  • R5 = 9 Ом;
  • R6 = 18 Ом;
  • R7 = 2Ом;
  • R8 = 2Ом;
  • R9 = 8 Ом;
  • R10 = 4 Ом.

Напряжение, поданное на схему:

U = 24 В.

Требуется рассчитать токи на всех резистивных элементах.

Исходная цепь

Для расчётов применяется закон Ома:

I = U/R, подставляя вместо R эквивалентное сопротивление.

Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте. Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения

Делают расчёты для каждого такого звена, после – всей цепи целиком

Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения. Делают расчёты для каждого такого звена, после – всей цепи целиком.

На рисунке выше изображено смешанное соединение сопротивлений. Его можно разбить на три участка:

  • АВ – участок, имеющий две параллельных ветви;
  • ВС – отрезок, вмещающий в себя последовательное сопряжение;
  • CD – отрезок схемы с расположением трёх параллельных цепочек.

Сопротивления R2 и R3, образующие нижнюю ветку отрезка АВ, соединены последовательно, что учитывается при расчёте.

Последовательно соединённые резисторы R2 и R3

Если посмотреть на участок СD, то можно отметить смешанное включение резистивных элементов.

Смешанное включение на участке CD

Начало расчётов состоит в определении эквивалентных сопротивлений для этих смешанных фрагментов. Выполняют это в следующем порядке:

  • Rэкв.2,3 = R2+R3=2 + 3 = 5 Ом;
  • Rэкв.7,8 = (R7*R8)/R7 + R8 = (2*2)/2 + 2 = 1 Ом;
  • Rэкв.7,8,9 = Rэкв.7,8 + R9 = 1 + 8 = 9 Ом.

Зная значения полученных эквивалентов, упрощают первоначальную схему. Она будет иметь вид, представленный на рисунке ниже.

Результат первого свёртывания

Далее можно уже определить Rэкв. для участков AB, BC, CD, по формулам:

  • Rэкв.AB = (R1*Rэкв 2,3)/R1 + Rэкв 2,3 = (1*5)/1 + 5 = 0,83 Ом;
  • Rэкв.BC = R4 + R5 = 6 + 9 = 15 Ом;
  • 1/Rэкв.CD = 1/R6 + 1/Rэкв.7,8,9 + 1/R10 = 1/18 + 1/9 + 1/4 = 0,05 + 0,11 + 0,25 = 0,41 Ом.

В результате выполненных вычислений получается эквивалентная схема, в которую входят три Rэкв. сопротивления. Она имеет вид, показанный на рисунке ниже.

Результат последующего свёртывания

Теперь можно определить эквивалентное сопротивление всей первоначальной схемы, сложив эквивалентные значения всех трёх участков:

Rэкв. = Rэкв.AB + Rэкв.BC + Rэкв.CD = 0,83 + 15 + 0,41 = 56,83 Ом.

Далее, используя закон Ома, находят ток в последнем последовательном участке:

I = U/ Rэкв. = 24/56,83 = 0,42 А.

Зная силу тока, можно найти, какое падение напряжения на рассмотренных участках AB, BC, CD. Это выполняется следующим образом:

  • UAB = I* Rэкв.AB= 0,42*0,83 = 0,35 В;
  • UBC = I* Rэкв.BC= 0,42*15 = 6,3В;
  • UCD = I* Rэкв.CD = 0,42*0,41 = 0,17 В.

Следующим шагом станет определение токов на параллельных отрезках AB и CD

  • I1 = UAB/R1 = 0,35/1 = 0,35 А;
  • I2 = UAB/Rэкв.2,3 = 0,35/5 = 0,07 А;
  • I3 = UCD/R6 = 0,17/18 = 0,009 А;
  • I6 = UCD/Rэкв.7,8,9= 0,17/9 = 0,02 А;
  • I7 = UCD/R10 = 0,17/4 = 0,04 А.

Далее, чтобы найти значения токов, проходящих через R7 и R8, нужно рассчитать напряжение на этих двух резисторах. Предварительно находят падение напряжения на R9.

U9 = R9*I6 = 8*0,02 = 0,16 В.

Теперь напряжение, падающее на Rэкв.7,8, будет разностью между U CD и U9.

U7,8 = UCD – U9= 0,17 – 0,16 = 1 В.

После этого можно уже узнать значение токов, движущихся по резисторам R7 и R8, используя формулы:

  • I4 = U7,8/R7 = 1/2 = 0,5 A;
  • I5 = U7,8/R8 = 1/2 = 0,5 A.

Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. С помощью такой замены сложные построения превращаются в элементарные цепи, которые сводятся к параллельным и последовательным соединениям резистивных элементов.

Параллельное соединение резисторов онлайн калькулятор

Соединение резисторов, при котором одноименные выводы каждого из элементов собираются в одну точку, называется параллельным. При этом ко всем резисторам подводится один и тот же потенциал, но величина тока через каждый из них будет отличаться

Для составления схем или при замене резисторов в уже существующих цепях важно знать их суммарное сопротивление, как показано на рисунке:

Как рассчитать общее сопротивление, общую силу тока и напряжение на каждом из резисторов?

Данный калькулятор позволяет рассчитать суммарное сопротивление параллельно соединенных резисторов с любым количеством элементов.

Для этого вам необходимо:

  • Указать в графе “количество резисторов” их число, в нашем примере их три;
  • После того, как вы укажите количество элементов, в поле ниже появится три окошка для ввода значения сопротивления каждого из элементов, к примеру, у вас резисторы сопротивлением 20, 30 и 60 Ом;
  • Далее нажмите кнопку “рассчитать” и в окошке “параллельное сопротивление в цепи” вы получите значение сопротивления в 10 Ом.

Чтобы рассчитать другую цепь или при подборе других элементов, нажмите кнопку “сбросить”, чтобы обнулить значение параллельно включенных элементов калькулятора.

  Подключение магнитного пускателя через кнопочный пост видео

Для расчета суммарного сопротивления калькулятором используется такое соотношение:

Как рассчитать общее сопротивление, общую силу тока и напряжение на каждом из резисторов?

  • Rсум – суммарное сопротивление параллельно соединенных элементов
  • R1 – сопротивление первого резистора;
  • R2 – сопротивление второго резистора;
  • R3 – сопротивление третьего резистора;
  • Rn – сопротивление n-ого элемента.

Таким образом, в рассматриваемом примере параллельно включены три резистора, поэтому формула для определения суммарного сопротивления будет иметь такой вид:

Чтобы выразить величину суммарного сопротивления необходимо умножить обе половины уравнения на произведение сопротивлений всех трех резисторов. После этого перенести составляющие элементы по правилу пропорции и получить значение сопротивления:

Как видите, расчет параллельного сопротивления резисторов вручную требует немалых усилий, поэтому куда проще его сделать на нашем онлайн калькуляторе.

Обратите внимание, при наличии элементов с сопротивлением в разной размерности Ом, кОм, МОм, их необходимо привести к одной величине, прежде чем производить расчет. К примеру, в Ом и указывать в поле калькулятора для расчета параллельного соединения резисторов значение непосредственно в Омах

Онлайн калькулятор для расчета параллельного сопротивления позволит установить общее эквивалентное сопротивление в цепи R1 + R2 +Rn. Данный калькулятор можно смело назвать одним из самых простых и эффективных.

  Литейная машина под давлением

Для получения результатов вам необходимо ввести:

  • Количество резисторов.
  • Указать мощность каждого резистора (Ом).
  • Нажать кнопку «Расчитать».

В результате вы сможете получить точно сопротивление резисторов в сети

Калькулятор для расчета параллельного сопротивления позволит безошибочно все определить, а это очень важно, так как ручной расчет считается достаточно сложным и трудоемким процессом. Наш калькулятор с легкостью поможет вам справиться со всем

Для того чтобы определить общее эквивалентное сопротивление, можно воспользоваться точным и удобным калькулятором. Где, внеся данные по количеству резисторов, калькулятор произведет расчет в автоматическом режиме.

Данное соединение является одним из 2-ух видов, в данном случае оба вывода 1-го из резисторов соединяются с выводами 2-го резистора. В иных случаях их принято соединять параллельно или последовательно, чтобы можно было создать схемы сложного типа.

  Многофункциональный станок своими руками чертежи

Для того чтобы найти ток, который протекает через определенный резистор, следует использовать формулу: Произведем расчеты согласно примеру Разрабатывается устройство, в котором есть необходимость использовать резистор, которое имеет сопротивление 8Ом. Исходя из того, что номинальный ряд согласно стандартным значениям таких резисторов не имеет, выходом будет использование 2-ух резисторов соединенных параллельно.

Для такого способа производятся следующие расчеты: Данная формула показывает, что в случае когда R1 = R2, R будет составлять ровно половину сопротивления 1-го из 2-ух резисторов. И если R=8Ом, то соответственно R1 и R2 = 2*8=16Ом.

Предложения и пожелания пишите на [email protected]

Поделитесь этим калькулятором на форуме или в сети!

Это помогает делать новые калькуляторы.

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Как рассчитать мощность резистора?

Мощность рассеивания резистора У резистора есть довольно важный параметр, который целиком и полностью влияет на надёжность его работы. Этот параметр называется мощностью рассеивания. Он уже упоминался в статье о параметрах резистора.

Сама по себе мощность постоянного тока рассчитывается по простой формуле:

Как видим, мощность зависит от напряжения и тока. В реальной цепи через резистор протекает определённый ток. Поскольку резистор обладает сопротивлением, то под действием протекающего тока резистор нагревается. На нём выделяется какое-то количество тепла. Это и есть та мощность, которая рассеивается на резисторе.

Расчёт

До изучения технологий вычислений необходимо уточнить основные определения:

  • ветвями называют цепи с одним током;
  • узлы – это места их соединения;
  • контуры – замкнутые пути прохождения токов по нескольким ветвям.

Следует отдельно отметить два постулата. Они получили специфическое название «правила (законы) Кирхгофа» по фамилии ученого, сформулировавшего базовые принципы.

Первый закон (I1 + I2 + … + In = 0) определяет равным нулю суммарное значение всех токов, которые входят и выходят из одной точки в месте соединения нескольких ветвей.

Надо подчеркнуть! Данное выражение является точным для любых комбинаций компонентов, включенных в соответствующие цепи (резисторов, источников тока и других). Для удобства и наглядности расчетов учитывают входящие в узел токи с положительным знаком, выходящие – с отрицательным.

Второе правило упомянуто в качестве промежуточного вывода при рассмотрении последовательно включенных резисторов (Uип = U1 + U2 + U3). В классической формулировке закон утверждает равенство суммарных ЭДС источников питания и потенциалов на пассивных элементах, объединенных в одном расчетном контуре.

Последовательное соединение резисторов

С учетом сделанных определений можно составить формулу для любого количества резисторов, установленных в единой цепи без разветвлений:

Rобщ = R1 + R2 + … + Rn.

Вне зависимости от иных внешних компонентов, токи на входе и выходе в соответствии с первым правилом Кирхгофа будут одинаковыми.

Пример:

  • Uип = 6,5B;
  • R1= 8 Ом;
  • R2 = 12 Ом;
  • R3 = 4 Ом;
  • Rобщ = 8 + 12 + 4 = 24 Ом;
  • I = 6,5/24 = 0,27 А;
  • U1 = I * R1 = 0,27 * 8 = 2,16 В;
  • U2 = 0,27 * 12 = 3,24 В;
  • U3 = 0,27 * 4 = 1,08 В.

Чтобы проверить последовательное соединение, формула на основе второго правила Кирхгофа пригодится:

Uип = 2,16 + 3,24 +1,08 ≈ 6,5 В.

Расчет подтвердил отсутствие ошибок.

Параллельное соединение резисторов

В этом варианте токи разделяются на входе и соединяются на выходе (первый закон Кирхгофа). Направление движения устанавливают от положительной клеммы с отрицательной подключенного источника питания. В соответствии с рассмотренными выше правилами при равенстве напряжений на отдельных резисторах токи в соответствующих цепях будут разными.

Для примера можно использовать предыдущие исходные данные:

общее сопротивление при параллельном соединении формула для трех компонентов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3

  • вставив номиналы, делают расчет Rобщ = 8 * 12 * 4 / (8*12 + 12*4 +8*4) = 2,182 Ом;
  • I = 6,5/ 2,182 ≈ 2,98 А;
  • I1 = 6,5/ 8 = 0,8125 А;
  • I2 = 6,5/12 ≈ 0,5417 А;
  • I3 = 6,5/4 = 1,625.

Как и в предыдущем случае, расчет проверяют. Если применяют параллельное сопротивление, формула вычислений должна подтвердить равенство токов:

I = 0,8125 + 0,5417 + 1,6225 = 2,9767 ≈ 2,98 А.

Соблюдено суммарное равенство входных и выходных значений для отдельного узла, поэтому ошибки отсутствуют.

Смешанное соединение резисторов

Если в схеме присутствует комбинация последовательных и параллельных соединений, выполняют последовательно упрощение, пользуясь представленными методиками расчетов.

На следующем рисунке показана последовательность преобразований:

  • по значениям установленных R3 и R4 определяют общее значение для участка цепи Rэ;
  • далее вычисляют сопротивление последовательных компонентов Rэ и R6;
  • на следующем этапе делают расчет для группы R2, Rэк и R5;
  • завершающее действие – суммирование R1, Rэ и R7 (рис. ниже).

Итоговый результат (Rэк) будет определять общее (эквивалентное) электрическое сопротивление группы резисторов. При необходимости вычисляют значения токов и напряжений в отдельных ветвях.

Последовательное соединение резисторов

Рассмотрим электрическую цепь, в которой три резистора расположены последовательно, т.е. друг за другом. Общее их сопротивление (R) будет рано сумме сопротивлений отдельного резистора (r).

R=r1+r2+r3

Для наглядности примера, в качестве резисторов рассмотрим обычные 40 Вт лампы накаливании. В данном случае вольфрамовая нить обладает своим сопротивлением и ее вполне можно считать резистором. Также введем понятие мощности нагрузки или резистора (P), которая измеряется в ватах (Вт).

Она имеет прямолинейную зависимость от силы тока и напряжения и вычисляется по формуле: P=Iх UС помощью несложных вычислений мы можем найти силу тока на резисторе, в качестве которого выступает лампочка.

Сила тока (I) = Мощность лампы (Р) / Напряжение (U) = 40 Вт / 220 В = 0,1818 А.

Для последовательного соединения элементов в электрической цепи справедливо правило, что силы тока протекающие через все проводники одинакова. Таким образом сила тока в резисторе r2 или r3 также будет 0,1818 А. Но в нашем варианте с лампочками будет отмечена одна особенность – яркость свечения уменьшится. Это происходит из-за того, что резистор выступает в качестве делителя напряжения. Этот нюанс часто используют для продления срока службы не ответственных устройств. Например, впаяв сопротивление перед лампочкой можно продлить срок ее службы, но при этом придется смерится с недостатком освещенности.

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример  №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

  • Таким образом, протекающий общий ток в цепи  можно определить как:
  • I = I1 + I2
  • Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
  • Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
  • Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
  • Таким образом, общий ток будет равен:
  • I = 0,545 мА + 0,255 мА = 0,8 мА
  • Это также можно проверить, используя закон Ома:
  • I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
  • где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
  • И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

Сложные электрические цепи со смешанным соединением элементов

Смешанное соединение очень часто можно встретить в электрических сетях. Оно представляет из себя комбинированные последовательные и параллельные соединения.

К примеру, если рассмотреть три элемента цепи, то два из них могут быть соединены параллельно, а третий подсоединен к ним последовательно.

При наличии большего числа приборов, смешанные цепи могут быть самыми разнообразными. Применяются даже более усложненные схемы, включающие более одного ЭДС-источника.

Не нашли что искали?

Просто напиши и мы поможем

Используют ряд методик для просчета таких цепей. Самой востребованной является методика, которая использует II закон Кирхгофа. Данный закон гласит о том, что алгебраическая сумма ЭДС замкнутого контура равняется алгебраической сумме падений напряжений.

Здесь учитывается именно алгебраическая сумма, без учета знаков, так как встречные ЭДС, так же как и напряжения, сформированные встречными токами, могут иметь разные знаки.

Встречается, что известны сопротивления отдельных участков и ЭДС сложных цепей. Для вычисления токов по II закону Кирхгофа, для замкнутых контуров формируют уравнения с неизвестными токами.

Также к данным уравнениям записываются уравнения точек разветвления, что составляются по I закону Кирхгофа. Решив такую систему уравнений, находят токи. Если цепи очень сложные, то данный метод будет очень громоздким, поскольку в уравнениях будет большое количество неизвестных.

§15. Параллельное и смешанное соединение проводников.

Если элементы электрической цепи соединены таким образом, что находятся под одинаковым напряжением, то такое соединение называется параллельным. Рассмотрим пример по рис. 1. Ток из узла «а» разделяется на четыре ветви, к каждой из которых подключены резисторы. Очевидно, что общее сопротивление уменьшится, если бы был подключен один резистор, а проводимость цепи, наоборот, увеличится. Общая проводимость цепи будет искомая также, как и общее сопротивление при последовательном соединении: . Ну а сопротивление будет обратно пропорционально проводимости: . Докажем полученное нами выражение. Обозначим силу тока во входящей цепи буквой I, а силу тока в каждой ветви соответственно I1, I2, I3, I4, а напряжение между сопротивлениями (между точками «а» и «б») – U и общее сопротивление в этих ветвях – R. По закону Ома ток на участке цепи равен: , токи в ветвях будут равны соответственно . По первому закону Кирхгофа (сумма токов, входящих в общую точку, равна сумме токов, выходящих из этой точки) I=I1+I2+I3+I4 или что одно и тоже: Преобразовав обе стороны выражения, получаем: Собственно, что и требовалось доказать. Это выражение применимо для любого количества сопротивлений, соединенных параллельно. Если в цепи присутствуют только два параллельно соединенных резистора (либо другого элемента, имеющего сопротивление), то можно воспользоваться более удобной формулой, преобразовав из выше написанного равенства: Если при параллельном соединении элементы имеют одинаковые сопротивления, то общее сопротивление цепи можно вычислить по формуле Rобщ=R/n, где n – число элементов на данном участке цепи.

Как рассчитать общее сопротивление, общую силу тока и напряжение на каждом из резисторов?Вернувшись к рис. 1, можно записать следующие выражения: U=I1·R1; U=I2·R2; U=I3·R3; U=I4·R4. Заметим, что левые части этих соотношений равны, значит равны и правые их части: I1·R1= I2·R2= I3·R3= I4·R4. Отсюда получим следующие выражения: и т. д. Из этих выражений видно, что токи обратно пропорциональны этим сопротивлениям. То есть, чем меньше сопротивление параллельно включенного элемента, тем больше ток в этом элементе и наоборот. При неизменном напряжении между узлами цепи, токи в элементах, вставленных в разрыв между этими узлами, в отличие от последовательного соединения, не зависят один от другого. Потому лампы, двигатели и прочие электроприемники обычно включают параллельно. Если в цепь с параллельно включенными сопротивлениями добавить последовательно им еще резистор, то такое соединение называется смешанным. Для вычисления эквивалентного сопротивления при смешанном соединении резисторов, определяют сначала общее сопротивление резисторов, соединенных параллельно либо последовательно, заменив их резистором, равным вычисленному. К примеру, чтобы определить сопротивление между точками «б» и «в» (рис. 2) вначале вычисляют значение общего сопротивления между точками «б» и «в»: а потом суммируют найденное значение с сопротивлением R1: R=R1+ R2·R3/(R2+R3).

Зависимость сопротивления от температуры

Использование резисторов, как термометров, обусловлено почти линейной зависимостью их сопротивления от температуры. Это касается тех резисторов, у которых в качестве резистивного материала используется проволока или металл. Формула зависимости:

R = R0+α(t-t0),

  • α – температурный коэффициент, К-1;
  • R0 – сопротивление проводника при 00К;
  • t0 – температура проводника при 00К.

Речь идёт о значении температуры в Кельвинах. При температурах, приближающихся к нулю по Кельвину (-273°С), у множества металлов при охлаждении R скачком падает до нулевой отметки. В этом случае можно говорить о сверхпроводимости.

Интересно. Металлы, имеющие хорошую проводимость при нормальной температуре, могут не быть сверхпроводниками при критической отметки этой физической величины. Сверхпроводники в нормальном состоянии имеют сопротивление большее, чем традиционные тоководы: медные, серебряные или золотые.

При нагревании проводников изменение сопротивления происходит в основном за счёт изменения его удельного значения и имеет линейную зависимость.

Параллельное соединение резисторов. Калькулятор для расчета

Как рассчитать общее сопротивление, общую силу тока и напряжение на каждом из резисторов?

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом. Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны. Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: