Как ведут себя диэлектрики в электрическом поле

Использование

При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств.

Диэлектрики используются не только как изоляционные материалы.

Пассивные свойства

Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных ёмкостей. Если материал используется в качестве диэлектрика конденсатора определённой ёмкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.

Активные свойства диэлектриков

Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др.

Преломление линий электрической индукции.

Из рисунка 11.12 видно, что

тогда

Таким образом, на границе двух диэлектриков линии электрической индукции преломляются.


    (11.34)

В однородном изотропном диэлектрике индукция и напряженность сонаправлены, следовательно,
линии напряженности преломляются аналогично. Однако картины линий индукции и
линий напряженности будут все же различны. Линии индукции непрерывны, а линии
напряженности частично прерываются на границе раздела. На рис.11.13а и 11.13б
показано преломление электрического поля на бесконечной плоскопараллельной диэлектрической
пластинке. Угадайте, где линии индукции, а где напряженности?

Как ведут себя диэлектрики в электрическом поле

На рис.11.13в показаны линии индукции для пластинки
конечных размеров. Когда линии индукции переходят из среды с меньшей проницаемостью
в среду с большей проницаемостью, то вследствие преломления они оказываются
ближе друг к другу. В этом смысле можно говорить, что в диэлектрике эти линии сгущаются.

На рис.11.14 изображено изменение однородного поля при внесении в него диэлектрического
шара (или цилиндра, ось которого перпендикулярна плоскости чертежа).

Диэлектрическая проницаемость шара на рис.11.14а больше, а на рис.11.14б меньше
диэлектрической проницаемости среды. В первом случае линии индукции концентрируются,
а во втором случае становятся более редкими.

Для описания полого диэлектрика предоставим слово профессору А.А.Эйхенвальду.

«Если въ какомъ-нибудь полъ помъстить
полый дiэлектрикъ, напръмеръ, въ видъ цилиндра, то вслъдствiе концентрацiи линiй силъ въ дiэлектрикъ
внутри его полости поле будетъ ослаблено (рис.11.15). Это ослабленiе будетъ тъмъ значительнъе,
чъмъ совершеннъе замкнута сама полость и чъмъ больше дiэлектрическая постоянная дiэлектрика. Если же
будетъ помъщенъ полый проводникъ, то во внутренней полости совсъмъ не будет линiй силъ(рис.11.16)».


Как ведут себя диэлектрики в электрическом поле   Как ведут себя диэлектрики в электрическом поле

Проводники

Проводники имеют частично заполненную валентную зону, которая перекрывается с зоной проводимости. Это приводит к способности валентных электронов свободно перемещаться в кристалле или направлено двигаться под действием внешнего поля. Отсутствие запрещенной зоны у металлов объясняется тем, что в их кристаллах s- и p-зоны перекрываются, а количество валентных электронов чрезвычайно мало по сравнению с числом свободных орбиталей в валентной зоне.

Спаренные электроны валентной зоны могут свободно переходить с нижних энергетических уровней на свободные уровни, в том числе и на свободные уровни зоны проводимости. Это обеспечивает высокую электропроводность металлов. Наибольшую электропроводность, с точки зрения зонной теории, имеют металлы, в которых количество электронов в валентной зоне равно числу электронных уровней в зоне проводимости. При этом условии все электроны могут переходить в квазисвободное состояние и участвовать в переносе электричества. К металлам с высокой электропроводностью принадлежат щелочные металлы (Li, Na, K), d-металлы I группы (Cu, Ag, Au), а также металлы II группы (Mg, Ca, Sr, Zn, Cd, Hg), в которых наблюдается перекрытие валентной зоны и зоны проводимости.

Граничные условия.

Рассмотрим границу двух диэлектриков, на которые наложено внешнее поле
. Под действием
внешнего поля оба диэлектрика поляризуются и вблизи границы в каждом из них
появятся поляризационные заряды (рис.11.11). Они создадут собственное поле

причем в обоих диэлектриках поле направлено в разные стороны. Если для определенности
считать, что |s1|>|s2|,
то поля направлены от поверхности. Так как электрическое поле заряженной поверхности
перпендикулярно ей, то касательные составляющие результирующего поля равны друг другу


    (11.26)

Нормальные же составляющие терпят разрыв

Как ведут себя диэлектрики в электрическом поле

Если кроме поляризационных зарядов на границе имеются еще и свободные заряды
с поверхностной плотностью s, то


;   

или


     (11.30)

Формулы (11.26) и (11.30) называются граничными условиями для касательной составляющей напряженности
и нормальной составляющей индукции электрического поля.

Если на поверхности есть свободный заряд, то электрическая индукция терпит разрыв.
Если такого заряда нет, то индукция непрерывна.

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​\( \varphi \)​, единица измерения в СИ – вольт (В).

Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​\( \Delta\varphi \)​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​\( U \)​ и называют напряжением.

Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле. В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки

В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда ​\( q \)​ в точке, удаленной от него на расстояние ​\( r \)​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​\( r =R \)​, где ​\( R \)​ – радиус шара). Напряженность поля внутри шара равна нулю

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

Кристаллическая решетка поможет разобраться

Сейчас в познании электрических диэлектриков нам поможет разобраться кристаллическая решетка. Для того, чтобы термины не казались нам непонятными, давайте их освежим в своей голове. Кристаллическая решетка — это группа таких точек, которые образуются в веществах (а точнее в кристаллах) под воздействием сдвигов (они, кстати, могут происходить из-за воздействия электрического поля. Отлично, вспомнили. Давайте теперь разбираться.

Как мы помним, в атоме, который в данный момент изолирован, энергия электронов не может принимать какие угодно значения. В таком состоянии энергия будет принимать четко обозначенные значение W1, W2, W3 и т.д. Вот, взгляните на график:

Конечно же, каждый из этих уровней будет немного смещен после того, как атомы войдут в состав твердой кристаллической решетки. В итоге зона, в которой будет концентрировать вся энергия будет общей для всей решетки.

Итак, в кристаллической решетке энергия электронов лежит в пределах четко определенных зон и все значения, которые находятся вне этой зоны, запрещены. Это мы поняли. Двигаемся дальше. По принципу Паули каждая зона может вместить в себя ограниченное количество электронов. Сначала электроны будут заполнять нижние уровни, а когда эти ряды заполняться полностью, они будут заполнять верхние ряды.

И вот теперь ключевая мысль, которую нужно понять, чтобы разобраться в том, почему те или иные вещества проводят электрический ток. Раз электроны постепенно заполняют ряды от нижнего к верхнему, то на самом верхнем ряду они либо заполнят этот ряд полностью, либо только частично.

Так вот, при частичном заполнении ряда электроны смогут свободно по нему перемещаться, а значит и будут проводить ток. Бинго! А вот в случае, если электроны все-таки заполнят верхний уровень, то при воздействии электрического поля никаких сдвигов не произойдет и, соответственно, такое вещество можно назвать диэлектриком.

Очень похожая ситуация происходит и с аморфными твердыми телами (ну например янтарь или полиэтилен). По определению, у таких веществ расположение атомов очень случайно, а зоны, общие для всего кристалла просто не могут существовать, а значит они тоже электрические диэлектрики.

Электрическая индукция.

Связанные заряды отличаются от свободных только тем, что не могут существовать отдельно друг от друга.
Они также являются источником поля и для них можно записать теорему Гаусса

Отсюда легко получить


      (11.15)

Величину, стоящую в скобках, принято называть индукцией электрического
поля (по старому — электрическим смещением).


      (11.16)

Ясно, что поляризованность диэлектрика должна быть связана с напряженностью
электрического поля в данной точке. Самое простое — предположить, что они пропорциональны
друг другу (это выполняется, как показывает эксперимент, для очень большого
класса веществ).


      (11.17)

где c — коэффициент пропорциональности, называемый диэлектрической
восприимчивостью, а электрическую постоянную вводим для удобства записи. Тогда

Величина, стоящая в скобках, по смыслу совпадает с диэлектрической проницаемостью среды
e (с ней мы уже встречались
). Очевидно, что


      (11.19)

Пусть два заряженных шарика взаимодействуют между собой в
вакууме. Погрузим их в изолирующую (диэлектрическую) жидкость, например, в керосин
(рис.11.7). Сила взаимодействия при этом заметно уменьшается. Керосин поляризуется,
и у поверхности положительного шарика собираются отрицательные заряды молекулярных
диполей керосина, а около отрицательного шарика — положительные заряды. Легко
видеть, что поле при этом ослабевает, следовательно, уменьшается и сила взаимодействия между шариками.

Этим объясняется ряд известных опытов.

Парафиновый шарик б притягивается к заряженному металлическому шарику
а в воздухе, но отталкивается от него в ацетоне (рис.11.8). Это объясняется
тем, что диэлектрическая проницаемость ацетона e=20,74 больше,
чем диэлектрическая проницаемость парафина e=1,90-2,20.
По сути дела парафиновый шарик вместе со слоем окружающего диэлектрика имеет тот же по знаку заряд,
что и металлический шар.

Еще один эксперимент — это опыт Пуччианти. В стакан с керосином
 (e=2,10) помещается металлический заряженный шарик, вблизи которого
из трубки выходят пузырьки воздуха ( e=1,00059), отталкиваясь от шарика.
Вы теперь уже достаточно подготовлены, чтобы объяснить причину этого явления. Следите только, чтобы воздух выходил
достаточно медленно, тогда пузырьки не будут электризоваться.

Статическое электричество

Когда мы рассыпаем искры, снимая синтетическую одежду, или испытываем неприятный укол тока, прикасаясь к металлической поверхности – это разряд статического электричества. Диэлектрики способны накапливать на своей поверхности большие количества свободных носителей заряда. Это «лишние» электроны или, напротив, неполные атомы, лишившиеся одного или двух электронов из своего электронного облака.

Потеря зарядов и их приобретение происходит при трении тел или при их соприкосновении. Знаменитый опыт с расческой, электризующей волосы,  иллюстрирует это явление: пластмасса, при трении о волосы, теряет электроны, а на волосинках они накапливаются. В результате волосы, приобретая одноименный заряд, отталкиваются друг от друга, а расческа интенсивно притягивает пылинки, чтобы скомпенсировать недостаток электронов.

Массы влажного воздуха, образующие грозовые тучи, накапливают заряды, взаимодействуя с ионосферой. Возможно и формирование разноименных зарядов в грозовых тучах, происходящее от взаимодействия  воздушных потоков разной температуры и влажности. Воздух, при нормальных условиях,  является диэлектриком, но при накоплении в тучах зарядов возникает очень  большое напряжение между тучами и землей.

Особенно сильна напряженность поля возле заостренных возвышающихся предметов: мачты, вершины гор, электрические опоры «притягивают» молнии. Происходит пробой диэлектрика, с образованием в воздухе лавинного канала; по этому каналу идет сильный ток.

Что такое полупроводник

Полупроводник по обозначению – вещество, электрическая проводимость которого меньше, чем у металла, и больше, чем у диэлектрика.

Полупроводники

Отличие полупроводника в том, что его электропроводность зависит от температурного режима и объема примесей в составе. Материал обладает характеристиками, как проводящими, так и диэлектрическими.

При увеличении температуры электропроводность вещества растёт, а уровень сопротивления падает. При уменьшении температуры сопротивление стремится к бесконечности.

Благодаря своим уникальным свойствам, полупроводники применяются во многих отраслях промышленности: это и маломощные SMD на печатных платах, и устройства высокой мощности, например, тиристоры в силовой преобразовательной технике.

Упражнения

К металлическому шару, установленному на электроскопе, одновременно прикасаются наэлектризованной эбонитовой палочкой и рукой. Затем отнимают сначала руку, а потом палочку. Какого знака заряд получит электроскоп?

В результате контакта эбонитовой палочки с шаром электроскоп получит небольшой отрицательный заряд, который через руку уйдет в землю. Так как эбонит – диэлектрик, то на остальных участках палочки, которые не контактировали с шаром, отрицательные заряды останутся неподвижными. Они зарядят электроскоп положительным зарядом.

Как известно, заряженный шарик притягивает бумажку. Как изменится сила притяжения, если окружить металлической сферой заряженный шарик? бумажку?

Если окружить шарик концентрической металлической сферой, ничего не изменится: и шарик и металлическая сфера действуют как заряд, сосредоточенный в точке, находящейся в центре шарика. Если окружить сферой бумажку, сила притяжения обратится в ноль: бумажка попадает в «цилиндр Фарадея», зато теперь металлическая сфера и шарик будут притягиваться друг к другу.

Внутрь полой сферы проводящей незаряженной сферы был помещен шарик с зарядом q, после чего сфера была на короткое время соединена с землей, и затем шарик удален из сферы. Какой заряд будет иметь сфера после этих операций? Где и как будет распределен этот заряд? Где и какое будет существовать электрическое поле?

Заряд q. Он будет распределен равномерно по внешней поверхности сферы. Внутри сферы напряженность поля будет равна нулю. Вне сферы будет существовать электрическое поле, подобное полю точечного заряда q, помещенного в центр сферы.

Имеется полая проводящая незаряженная сфера, внутрь которой помещен положительный заряженный шарик. Укажите: а) Где будет существовать электрическое поле? б) Будут ли появляться заряды на сфере? в) Будет ли меняться поле внутри и вне сферы, если перемещать шарик, если шарик оставить неподвижным, а снаружи к сфере поднести заряженное тело?

а) Поле будет существовать внутри и вне сферы; б) на внутренней поверхности появится отрицательный заряд, на внешней — положительный; в) в первом случае будет изменяться электрическое поле только внутри сферы, во втором — только вне сферы.

Заземление

Благодаря своим огромным размерам Земля действует как резервуар зарядов, принимая и отдавая электроны. Когда мы поднесем к заземленному металлическому предмету отрицательно заряженный стержень, свободные электроны в металле будут отталкиваться и уходить в Землю. Если отсоединить стержень от этого предмета, на металле останется избыточный положительный заряд. Так мы зарядим тело положительным зарядом.

Как ведут себя диэлектрики в электрическом поле

Различные стадии зарядки тела: а) приближая к шарику электроскопа отрицательно заряженный сургуч, мы вызываем на стержне электроскопа положительный заряд, а на его листках — отрицательный заряд; б) не убирая сургуча с отрицательным зарядом, прикасаемся рукой к шарику электроскопа и отводим часть отрицательного заряда электроскопа через свое тело в землю; листки электроскопа спадают; в) убрав палец, а затем убрав сургуч, мы оставляем на электроскопе только положительный заряд, который распределяется между шариком и листками электроскопа.

Поляризованность.

Будем считать, что нейтральная молекула (или атом) в
диэлектрике под воздействием электрического поля превращаются в диполь, который
имеет дипольный момент


     (11.1)

rem:
В некоторых диэлектриках и без внешнего поля уже есть диполи. О причинах (см.
).

Для количественной характеристики поляризации диэлектрика служит физическая
величина, которая называется поляризованностью.

def:
Поляризованностью диэлектрика называется
электрический дипольный момент всех молекул в единице объема диэлектрика.

    
   (11.2)

Если диэлектрик однородный и смещение зарядов по всему объему одинаково, то
поляризованность (устаревшее название — вектор поляризации) будет однородна.

Возьмем тонкую диэлектрическую пластинку и выделим в
ней элементарный объем в виде наклонного цилиндра с образующей, параллельной
полю (рис.11.5). Ясно, что объем этого цилиндра , где
a — угол между направлением поля и нормалью. Поляризованность всего
объема цилиндра . С другой
стороны это есть не что иное, как дипольный момент системы зарядов на поверхностях
, где — поверхностная
плотность связанных зарядов. Так как и
имеют одно направление, то, приравняв, получим


или
     (11.6)

где — проекция
вектора поляризованности на внешнюю нормаль к соответствующей поверхности. Для
правой поверхности (см. рис.) >0 и
s>0, для левой
<0 и
s<0. Нормальная составляющая поляризованности представляет количество
электричества (заряд), смещаемого через единичную площадку в направлении нормали к ней.

Как влияет диэлектрик на электростатическое поле?

С помощью простого опыта можно убедиться в том, что незаряженный диэлектрик может создавать электрическое поле. На рисунке 1.52 вы видите заряженный электрометр с металлическим диском на конце стержня. Если к диску электрометра поднести незаряженный диэлектрик, например толстое стекло, то стрелка электрометра слегка приблизится к стержню (рис. 1.53). Это может произойти только в том случае, если диэлектрик, помещенный в электрическое поле заряженного диска, сам создает электрическое поле. Это поле влияет на распределение заряда в стержне и диске электрометра, уменьшая заряд стрелки и увеличивая соответственно заряд диска. Следовательно, диэлектрик, оставаясь нейтральным, создает электрическое поле, напряженность которого направлена противоположно напряженности поля, созданного заряженным телом. Ведь согласно принципу суперпозиции напряженность электрического поля всегда равна сумме напряженностей полей, созданных в данной точке всеми заряженными частицами.

Как ведут себя диэлектрики в электрическом поле

§ 5. Проводники и диэлектрики в электрическом поле

Как нам уже известно, проводник представляет собой тело, которое содержит большое число свободных электронов, заряды которых компенсируются положительными зарядами ядер атомов. Если металлический проводник поместить в электрическое поле (рис. 12), то под влиянием сил поля свободные электроны проводника придут в движение в сторону, противоположную направлению сил поля. В результате этого на одной стороне проводника возникает избыточный отрицательный заряд, а на другой стороне проводника — избыточный положительный заряд.

Рис. 12. Проводник в электрическом поле

Разделение зарядов в проводнике под влиянием внешнего электрического поля называется электризацией через влияние, или электростатической индукцией, а заряды на проводнике — индуцированными зарядами.

Индуцированные заряды проводника создают добавочное электрическое поле, направление которого противоположно внешнему полю.

Результирующее электрическое поле внутри проводника уменьшается, а вместе с ним уменьшаются силы, действующие на перераспределение зарядов. Движение зарядов в проводнике прекратится, когда напряженность поля, вызванного индуцированными зарядами проводника εп, станет равной напряженности внешнего поля εвн, а результирующая напряженность поля внутри проводника будет равна нулю.

Как было указано выше, диэлектрик отличается от проводника отсутствием свободных электронов (точнее, весьма малым количеством свободных электронов). Электроны атомов диэлектрика прочно связаны с ядром атома.

Диэлектрик, внесенный в электрическое поле, так же как и проводник, электризуется через влияние. Однако между электризацией проводника и диэлектрика имеется существенная разница. Если в проводнике под влиянием сил электрического поля свободные электроны передвигаются по всему объему проводника, то в диэлектрике свободного перемещения электрических зарядов произойти не может. Но в пределах каждой молекулы диэлектрика возникает смещение положительного заряда вдоль направления электрического поля и отрицательного заряда в обратном направлении. В результате на поверхности диэлектрика возникнут электрические заряды.

Рассматриваемое явление называется поляризацией диэлектрика.

Различают диэлектрики двух классов. У диэлектриков первого класса молекула в нейтральном состоянии имеет положительный и отрицательный заряды, настолько близко расположенные один к другому, что действие их взаимно компенсируется. Под влиянием электрического поля положительные и отрицательные заряды в пределах молекулы несколько смещаются один относительно другого, образуя диполь* (рис. 13).

* ()

Рис. 13. Электрические заряды молекул диэлектрика: а — без внешнего поля, б — при наличии поля

У диэлектриков второго класса молекулы и в отсутствие электрического поля образуют диполи. Такие диэлектрики называются полярными. К ним относятся вода, аммиак, эфир, ацетон и т. д. У таких диэлектриков при отсутствии электрического поля диполи в пространстве расположены хаотически, и вследствие этого результирующее электрическое поле вокруг полярного диэлектрика равно нулю. Под действием внешнего электрического поля молекулы (а стало быть, и диполи) стремятся повернуться так, чтобы их оси совпали с направлением внешнего поля. С устранением электрического поля поляризация диэлектрика исчезает. Таким образом, поляризация представляет собой упругое смещение электрических зарядов в веществе диэлектрика.

При некоторой определенной величине напряженности электрического поля смещение зарядов достигает предельной величины, после чего происходит разрушение — пробой диэлектрика, в результате которого диэлектрик теряет свои изолирующие свойства и становится токопроводящим.

Напряженность электрического поля, при которой наступает пробой диэлектрика, называется пробивной напряженностью εпр. Напряженность поля, допускаемая при работе диэлектрика εдоп, должна быть меньше пробивной напряженности. Отношение

называется запасом прочности.

Приведем значения пробивной напряженности (в кв/мм) для некоторых диэлектриков:

Поле в диэлектрике

Как мы уже поняли, поле в диэлектрике направлено ровно против внешнего электрического поля. Но этих знаний нам не хватит, чтобы хорошо разбираться в диэлектриках.

Поэтому давайте немного углубимся в эту тему. Напомним, что поляризация диэлектрика — это когда заряды перенаправляются так, что минусы смотря в одну сторону, а плюсы — в другую. Так вот, давайте же разберемся в видах поляризации.

Деформационная (или же электронная)

Этот вид поляризации интересует нас больше всего. Стоит отметить, что такая поляризация характерна для веществ, состоящих из неполярных молекул, то есть у которых нет дипольных моментов. Что происходит? Все просто — главное, что нужно понять, это то, что смещаются электронные оболочки. При этом, положительно заряженные атомные ядра смещаются по направлению к внешнему полю, а отрицательно заряженные электронные оболочки — против поля.

Дипольная (или же ориентационная)

Это один из наиболее распространенных видов поляризации. Однако здесь все с точностью до наоборот. Здесь уже меняют ориентацию диполи. Здесь все еще просто — когда поле снаружи не воздействует на вещество, порядок у диполей абсолютно хаотичен, но когда внешнее поле начинает воздействовать на вещество, то абсолютно все диполи разворачиваются положительной стороной к полю, которое на него воздействует. Как мы уже разбирались выше, стабильность положения диполей определяется напряженностью поля и температурой вещества.

Ионная

Да, этот вид поляризации мы тоже не забыли. Здесь речь идет о смещении положительной решетки ионов. Они расположатся вдоль поля, а отрицательные — против.

Так почему же в самом начале мы сказали, что нас больше всего будет интересовать именно первый вид поляризации, если мы будет рассматривать положительные заряды? Все просто. Положительные заряды играют какую-то роль только при таком воздействии внешнего поля на вещество. Поэтому можете считать, что вы уже знаете о них все, что нужно.

Виды и типы диэлектриков

Классификация диэлектриков довольна обширная. Тут встречаются жидкие, твердые и газообразные вещества. Далее они делятся по определенным признакам. Ниже приведена условная классификация диэлектриков с примерами в форме списка.

  • газообразные
    • — полярные
    • — неполярные (воздух, элегаз)
  • жидкие
    • — полярные (вода, аммиак)

      — жидкие кристаллы

    • — неполярные (бензол, трансформаторное масло)
  • твердые
    • — центросимментричные
      • — аморфные
        • — смолы, битумы (эпоксидная смола)
        • — стекла
        • — неупорядоченные полимеры
      • — поликристаллы
        • — нерегулярные кристаллы
        • — керамика
        • — упорядоченные полимеры
        • — ситаллы
      • — монокристаллы
        • — молекулярные
        • — ковалентные
        • — ионные
          • — параэлектрики смещения
          • — параэлектрики „порядок-беспорядок”
        • — дипольные
      • — нецентросимментричные
        • — монокристаллы
          • — пироэлектрики
            • — сегнетоэлектрики смещения
            • — сегнетоэлектрики „порядок-беспорядок”
            • — линейные пироэлектрики
          • — пьезоэлектрики
            • — с водородными связями
            • — ковалентные
            • — ионные
        • — текстуры
          • — электронных дефектов
          • — ионных дефектов
          • — полярных молекул
          • — макродиполей
          • — сегнетоэлектрических доменов
          • — кристаллов в матрице

Если брать жидкие и газообразные диэлектрики, то основная классификация лежит в вопросе полярности. Разница в симметричности молекул. В полярных молекулы несимметричны, в неполярных — симметричны. Несимметричные молекулы называются диполями. В полярных жидкостях проводимость настолько велика, что их невозможно использовать в качестве изоляционных веществ. Поэтому для этих целей используют неполярные, тоже трансформаторное масло. А наличие полярных примесей даже в сотых долях значительно снижает планку пробоя и негативно сказывается на изоляционных свойствах неполярных диэлектриков.

кристаллы представляют собой нечто среднее между жидкостью и кристаллом, как следует из названия.

Еще популярным вопросом о свойствах и применении жидких диэлектриков будет следующий: вода — диэлектрик или проводник? В чистой дистиллированной воде отсутствуют примеси, которые могли бы вызвать протекание тока. Чистую воду можно создать в лабораторных, промышленных условиях. Эти условия сложны и трудновыполнимы для обычного человека. Есть простой способ проверить проводит ли дистиллированная вода ток.

Создать электрическую цепь (источник тока — провод — вода — провод — лампочка — другой провод — источник тока), в которой одним из участков для протекания тока будет сосуд с дистиллированной водой. При включении схемы в работу, лампочка не загорится — следовательно ток не проходит. Ну а если загорится, значит вода с примесями.

Поэтому любая вода, которую мы встречаем: из крана, в озере, в ванной — будет проводником за счет примесей, которые создают возможность для протекания тока. Не купайтесь в грозу, не работайте влажными руками с электричеством. Хотя чистая дистиллированная вода — полярный диэлектрик.

Для твердых диэлектриков классификация в основном лежит в вопросе активности и пассивности что ли. Если свойства постоянны, то диэлектрик используют в качестве изоляционного материала, то есть он пассивен. Если свойства меняются, в зависимости от внешних воздействий (тепло, давление), то этот диэлектрик применяют для других целей. Бумага является диэлектриком, если вода пропитана водой — то ток проводится и она проводник, если бумага пропитана трансформаторным маслом — то это диэлектрик.

Фольгой называют тонкую металлическую пластину, металл — как известно является проводником. В продаже имеется например ПВХ-фольга, тут слово фольга для наглядности, а слово ПВХ — для понимания смысла — ведь ПВХ это диэлектрик. Хотя в википедии — фольгой называется тонкий лист металла.

Аморфные жидкости — это и смола, и стекло, и битум, и воск. При повышении температуры этот диэлектрик тает, это замороженные вещества — это дикие определения, которые характеризуют лишь одну грань правды.

Поликристаллы — это, как бы сросшиеся кристаллы, объединенные в один кристалл. Например, соль.

Монокристалл — это цельный кристалл, в отличие от вышеупомянутого поликристалла имеющий непрерывную кристаллическую решетку.

Пьезоэлектрики — диэлектрики, у которых при механическом воздействии (растяжении-сжатии), возникает процесс ионизации. Применяется в зажигалках, детонаторах, УЗИ-обследовании.

Пироэлектрики — при изменении температуры в этих диэлектриках происходит самопроизвольная поляризация. Также она происходит при механическом воздействии, то есть пироэлектрики являются еще и пьезоэлектриками, но не наоборот. Примерами служат янтарь и турмалин.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: