Как выбрать устройство плавного пуска для электродвигателя

Устройства плавного пуска асинхронных двигателей

Известно, что пусковой ток асинхронного двигателя с короткозамкнутым ротором в 5-7 раз превышает его номинальный ток. Физически, причина обусловлена низким сопротивлении обмоток электрической машины в предпусковой момент. При приложении номинального напряжения к малому сопротивлению, ток имеет большое значение:

В идеальном случае если R стремится к нулю, то I стремится к бесконечности. В реалии же, ток достигает 5-7 кратного значения. В процессе разгона двигателя, сопротивление обмоток повышается до номинального уровня, а ток соответственно снижается. Передача энергии из сети в момент запуска электродвигателя:

Из выражения (2) можно сделать вывод, что параметры U, I, t могут быть изменены, таким образом, что передаваемая из сети энергия Е останется неизменной. Это выражение справедливо только для приводов с небольшой нагрузкой на валу, например привод вентилятора.

Использование устройств плавного пуска двигателей(УПП). При использовании УПП для ограничения пусковых токов выражение (1) будет действовать на выходе устройства, а выражение (2) на его входе. В основу регулирования напряжения в современных софтстартерах (другое название УПП ) лежит свойство тиристоров ограниченно пропускать электрический ток, в зависимости от напряжения, приложенного к управляющему электроду.

Как выбрать устройство плавного пуска для электродвигателя

Для работы тиристоров в сетях переменного напряжения, их включают встречно в параллельных ветвях, а управляющее напряжение подается на общий электрод. Такое устройство называется симистор, устанавливается он в каждом проводе трехфазной системы.

При протекании пусковых токов через полупроводниковые элементы на них выделяется значительное количество тепла. Для отвода тепла применяют радиаторы, значительно увеличивающие вес, габариты и стоимость устройства.

Другое решение проблемы — это использование схем с подключением шунтирующего контактора. После завершения пускового процесса, его контакты замыкаются, создавая параллельную цепь с меньшим сопротивлением. чем у полупроводников. Ток протекает по пути наименьшего сопротивления, а симисторы в это время остывают.

Как выбрать устройство плавного пуска для электродвигателя

Современные УПП собраны на микропроцессорной базе, позволяющей существенно расширить функциональность, по сравнению с аналоговыми устройствами плавного пуска. Регулирование напряжения на зажимах электродвигателя осуществляется в функции тока. Это означает, что величина управляющего напряжения симисторов строго дозируется программой, в зависимости от величины тока, протекающей в обмотках.

Регулирование в функции тока позволяет избежать перегруза питающей сети, а значит, появляется возможность экономить на сечении питающего кабеля, мощности трансформатора и габаритах распределительного устройства.

Функциональные возможности УПП во многом совпадают с частотными преобразователями, также используемыми в электроприводе, однако стоимость последних в разы превышает стоимость УПП. Современные устройства могут иметь дополнительные функции, как то: защита от перегруза, от перекоса фаз, неправильного чередования фаз, защита от малых токов (при кавитации в насосах), и пр.

Возможность регулирования напряжения позволяет тормозить двигатель, запускать его при повышенной нагрузке, экономить электроэнергию при установившемся режиме при небольшой нагрузке. Основным достоинством УПП является их невысокая стоимость в сравнении с “частотниками”.

— необходимость согласовывать включение УПП с защитными коммутационными аппаратами — само по себе устройство не защищено от токов коротких замыканий, протекающих через него; — при увеличении пускового времени с помощью УПП есть необходимость применения в цепи специальных автоматов с отстройкой теплового расцепителя по времени; — снижение пускового напряжения неизбежно ведет к снижению пускового момента, УПП применяют только в приводах с небольшой нагрузкой на валу; — влияние наличия полупроводниковых элементов на качество напряжения в сети.

Особенности фабричных моделей

Производители предлагают широкий ассортимент изделий в этой категории. Для упрощенного выбора устройства плавного пуска (УППА) достаточно уточнить соответствие мощности потребления определенного силового агрегата и количества фаз, которые будут изменяться.

При более тщательном изучении вопроса обращают внимание на номинал тока электронных ключей. Его выбирают в несколько раз больше, чем аналогичный рабочий параметр двигателя (берут значение для средних оборотов ротора). Запас по этой позиции определяют с учетом особенностей оборудования

В насосном оборудовании, например, вполне достаточно превышения на 250-300%. Для пилорам, где нагрузки увеличиваются очень быстро, подойдет множитель от 7 до 11

Запас по этой позиции определяют с учетом особенностей оборудования. В насосном оборудовании, например, вполне достаточно превышения на 250-300%. Для пилорам, где нагрузки увеличиваются очень быстро, подойдет множитель от 7 до 11.

К сведению. Отдельно проверяют цикл завершения и частоту операций. При повышенных нагрузках для достаточно быстрого охлаждения требуются более мощные тиристоры. Также применяют эффективные системы пассивного и активного охлаждения с радиаторами.

Простейшие электронные схемы увеличивают до расчетного уровня напряжение на выходе за определенный временной интервал. В современной схемотехнике применяют обратную связь с контролем сдвига фазы, вращающего момента, других параметров. Такие дополнения усложняют оборудование. Однако автоматизированное управление выполняет свои функции более точно с учетом реальных условий. Кроме блокировки опасных режимов, улучшаются экономические эксплуатационные параметры.

Иные важные нюансы приведены в следующем перечне:

  • специальное шунтирование основного ключа регулятора упрощает поддержание оптимального температурного режима;
  • цифровое управление отличается повышенной точностью;
  • для выставления нужных параметров пригодится встроенное индикаторное табло;
  • некоторые модели можно подключать к внешним устройствам для решения задач автоматизации контроля и регулировки.

Для корректного выбора ответственные производители приводят в описаниях расширенные сведения (пример):

  • назначение – асинхронные электрические двигатели;
  • рекомендуемая область применения – вентиляторы, насосное оборудование;
  • количество регулируемых фаз – 3;
  • параметры сети питания – 220-420 V с допустимой погрешностью 10%;
  • мощность потребления электродвигателя – 40/ 76 кВт для напряжения 220/ 400 V, соответственно;
  • фабричная настройка по току – 130А;
  • особенности пускового режима – контроль момента с применением обратной связи и ограничением по току;
  • управление – дискретное цифровое или аналоговое;
  • потребляемая мощность управляемой цепи – 15 Вт;
  • сигналы на цифровом выходе: тревога, отключение, остановка, пуск, работа;
  • скорость передачи сигналов информационного канала – от 4800 до 19200 бит/с;
  • блокировки: обрыв цепей фаз, превышение температурного порога с контролем электродвигателя (пускателя);
  • охлаждение устройства – конвекционное;
  • соответствие по протоколу IEC 60947-4-2 уровням электромагнитных помех;
  • устойчивость к вибрациям амплитудой 1,5 мм при частоте 2-13 Гц;
  • шум при работе – не более 55дБ;
  • рабочий температурный диапазон – от -10°C до +40°C.

Приведенное описание демонстрирует, что, кроме основных технических данных, необходим учет реальных условий эксплуатации. Тщательная подготовка увеличивает долговечность, предотвращает лишние затраты на ремонтные работы.

Подключение типового блока для плавного пуска электроинструмента

Сравнительная характеристика

Модель/Производитель Напряжение (В)/ Номинальный ток (А) Расчетная мощность, кВт Цена в руб. по состоянию на февраль 2019 г.
ALTISTART ATS01/ Schneider Electric 380/ 3 1,1 4250-4800
SSI-55/ INSTART 380/ 110 55 32900-34200
MCD100-007/ Danfoss 600/ 15 7,5 12700-13400
MCD 201-015-T4-CV3/ Danfoss 220 (380)/ 34 15 21200-22700
ALTISTART ATSU01/ Schneider Electric 220/ 9 1,5 7900-8600
GS3-045/ ESQ 380/ 90 45 31300-32800

Данные по расходам на покупку, приведенные в сводной таблице, актуализировать несложно. В данном примере они демонстрируют относительное изменение стоимости в зависимости от технических характеристик. Определенное значение в данном сравнении имеет известность бренда.

Как изготовить схему плавного пуска угловой шлифовальной машины своими руками

Популярная схема реализуется на основе управляющей микросхемы фазового регулирования КР118ПМ1, а силовая часть выполнена на симисторах. Такое устройство достаточно просто монтируется, не требует дополнительной настройки после сборки, а стало быть, изготовить ее может мастер без специализированного образования, достаточно уметь держать в руках паяльник.

Электрическая схема регулировки плавного пуска для болгарки

Предложенный блок можно подключить к любому электроинструменту, рассчитанному на переменное напряжение 220 вольт. Отдельный вынос кнопки питания не требуется, доработанный электроинструмент включается штатной клавишей. Схему можно установить как внутрь корпуса болгарки, таки и в разрыв питающего кабеля в отдельном корпусе.

Наиболее практичным является подключение блока плавного пуска к розетке, от которой запитывается электроинструмент. На вход (разъем ХР1) подается питание от сети 220 вольт. К выходу (разъем XS1) подключается расходная розетка, в которую втыкается вилка УШМ.

При замыкании клавиши пуска болгарки, по общей цепи питания подается напряжение на микросхему DA1. На управляющем конденсаторе происходит плавное нарастание напряжения. По мере заряда оно достигает рабочей величины. За счет этого тиристоры в составе микросхемы открываются не сразу, а с задержкой, время которой определяется зарядом конденсатора. Симистор VS1, управляемый тиристорами, открывается с такой же паузой.

Посмотрите видео с подробным разъяснением как сделать и какую схему применить

В каждом полупериоде переменного напряжения, задержка уменьшается в арифметической прогрессии, в результате чего напряжение на входе в электроинструмент плавно возрастает. Этот эффект и определяет плавность запуска двигателя болгарки. Следовательно обороты диска возрастают постепенно, и вал редуктора не испытывает инерционного шока.

Время набора оборотов до рабочего значения определяется емкостью конденсатора С2. Величина 47 мкФ обеспечивает плавный пуск за 2 секунды. При такой задержке нет особого дискомфорта для начала работы с инструментом, и в то же время сам электроинструмент не подвергается избыточным нагрузкам от резкого старта.

После выключения УШМ, конденсатор С2 разряжается сопротивлением резистора R1. При номинале 68 кОм время разряда составляет 3 секунды. После чего устройство плавного пуска готово к новому циклу запуска болгарки. При небольшой доработке, схему можно модернизировать до регулятора оборотов двигателя. Для этого резистор R1 заменяется на переменный. Регулируя сопротивление, мы контролируем мощность двигателя, меняя его обороты.

Таким образом, в одном корпусе можно выполнить регулятор оборотов двигателя и устройство плавного пуска электроинструмента.

Остальные детали схемы работают следующим образом:

  • Резистор R2 контролирует величину силы тока, протекающую через управляющий вход симистора VS1;
  • Конденсаторы С1 и С2 являются компонентами управления микросхемой КР118ПМ1, используемыми в типовой схеме включения.

Для простоты и компактности монтажа, резисторы и конденсаторы припаиваются прямо к ножкам микросхемы.

Симистор VS1 может быть любым, со следующими характеристиками: максимальное напряжение до 400 вольт, минимальный пропускной ток 25 ампер. Величина тока зависит от мощности угловой шлифовальной машины.

По причине плавного пуска болгарки, ток не будет превышать номинального рабочего значения для выбранного электроинструмента. Для экстренных случаев, например, заклинивания диска УШМ – необходим запас по току. Поэтому значение номинальной величины в амперах следует увеличить вдвое.

Номиналы радиодеталей, использованных в предлагаемой электросхеме – испытаны на УШМ мощностью 2 кВт. Запас по мощности имеется до 5 кВт, это связано с особенностью работы микросхемы КР118ПМ1. Схема рабочая, многократно исполненная домашними мастерами.

Если в вашем арсенале есть старенькая угловая шлифовальная машина, не спешите списывать её со счетов. Используя несложную электрическую схему, прибор можно легко модернизировать, добавив к нему функцию изменения частоты оборотов. Благодаря простому регулятору, который реально собрать своими руками за несколько часов, функциональность аппарата значительно возрастёт. Снизив частоту вращения, болгарку можно применить как шлифовальный и заточный станок для различных видов материалов. Появляются новые возможности для применения дополнительных насадок и оснастки.

Двусторонний рез

Довольно часто при креплении листа на профиль в сложных местах требуется выполнить двусторонний рез. Используется такой метод при оформлении оконных проемов, дверных, при необходимости обойти балки и другие сложные конструкции. Чем лучше резать гипсокартон в таком случае? Для начала требуется сделать отверстие прямоугольной либо квадратной формы. Вырезать его можно при помощи такого простейшего инструмента, как ножовка, либо острого ножа. Процесс резки не составляет сложностей:

  • сначала надо нанести на лист разметку при помощи простого карандаша и линейки;
  • с одной стороны лист надо подрезать при помощи ножовки, а с другой, используя нож;
  • теперь гипсокартон надламывается, срезается с одной стороны.

После надо при помощи обдирочного рубанка тщательно обработать кромку, чтобы получить ровные края. Когда лист раскроен, можно закрепить его на требуемом месте при помощи саморезов. Стыки и швы после монтажа шпаклюются, предварительно проклеиваются специальной сеткой.

Регуляторы тока с обратной связью

Регуляторы тока с обратной связью являются наиболее прогрессивными устройствами плавного пуска. Эти приборы в первую очередь регулируют ток, а не напряжение. Прямое управление током обеспечивает более точное управление пуском, а также более простую настройку и программирование софт-стартера. Большинство параметров, требующих установки при программировании регуляторов напряжения, в регуляторах тока устанавливаются автоматически.

Ведущие компании-производители устройств плавного пуска, как правило, выпускают различные модельные ряды приборов, относящиеся к разным категориям регуляторов и попадающих в разные ценовые диапазоны.

Таким образом, например, поступает Новозеландская компания AuCom Electronics, специализирующаяся на разработке и производстве устройств мягкого пуска более 25 лет и являющаяся одним из мировых лидеров в этой области. Компания в настоящее время выходит на Российский рынок с приборами нескольких серий с использованием технологии последних трех категорий плавного пуска, описанных выше.

Первая категория мягкого пуска в модельном ряде AuCom отсутствует ввиду ее низкой технической состоятельности.

Ко второй категории плавного пуска — регуляторы напряжения без обратной связи — относится серия CSX . Это компактные софт стартеры, обеспечивающие плавный пуск и остановку трехфазных асинхронных двигателей мощностью до 110 кВт и напряжением питания от 200 до 575 В переменного тока.

Третья категория плавного пуска — регуляторы напряжения с обратной связью — представлена серией CSX — i. Конструктивно серия аналогична CSX, но помимо плавного пуска и останова двигателя софт-стартеры CSX — i имеют расширенный пакет защит, таких как защита двигателя от перегрузки и перегрева, защита от затянутого времени пуска, защита от перекоса и неправильного чередования фаз, и др.

Устройства обеих серий имеют встроенный шунтирующий контактор и дополнительные коммуникационные модули Modbus RTU, Profibus, DeviceNet.

Серия IMS 2 — продвинутые устройства мягкого пуска, обеспечивающие комплексное управление с широким набором режимов разгона, торможения и защиты асинхронных двигателей мощностью до 1000 кВт (1575 А) и напряжением питания от 200 до 690 В переменного тока. Серия IMS 2 относится к четвертой категории — регуляторы тока с обратной связью и базируется на последних достижениях в области мягкого пуска. Широкие функциональные возможности приборов и высокие эксплуатационные характеристики позволяют адаптировать их практически для всех типов и характеров нагрузки двигателя. К этой же категории относятся софт стартеры серии MVS, которые предназначены для работы с высоковольтными двигателями с номинальным током от 80 А до 325 А и напряжением питания от 2,3 до 11 кВ переменного тока.

В заключение можно отметить, что знание особенностей и принципа действия устройств мягкого пуска позволяет более осознанно подойти к выбору и достигнуть оптимального технического результата при минимальных затратах в каждом конкретном применении.

Продукция AuCom распространяется дистрибьюторской сетью и представлена сервисной сетью более чем в 50 странах мира, в том числе в России компанией СТОИК ЛТД и ее партнерами.

ПУСК ПО СХЕМЕ ЗВЕЗДА-ТРЕУГОЛЬНИК

Другим способом запуска, использующимся на трехфазных двигателях, является перекоммутация обмоток: в момент пуска обмотки соединяются звездой, по мере разгона ротора обмотки переводятся в нормальное включение треугольником.

Такой метод пуска фактически является частным случаем способа пуска асинхронного электродвигателя на пониженном напряжении, так как напряжение на обмотках при этом снижаетсяпримерно в 1,73 раза.

Подобный способ пуска может быть легко реализован с помощью набора контакторов с ручным управлением или с приводом от реле времени, поэтому достаточно дешев и распространен. Основные недостатки этого способа:

  1. При отказе одного из контакторов произойдет нарушение коммутации, в результате чего либо станет невозможным пуск, либо значительно снизится мощность двигателя.
  2. Снижение напряжения и тока является фиксированным.
  3. Крутящий момент двигателя при включении обмоток звездой уменьшается, поэтому запуск желательно также производить без нагрузки.

Когда УПП необходимо

Некоторые машины не сразу дают понять, что нуждаются в сглаживающем механизме, однако чем раньше будет настроен плавный запуск, тем дольше и качественнее прослужит вся система. К сожалению, чаще всего задумываются о подключении УПП только тогда, когда сам двигатель говорит о губительности пусковых процессов. Чтобы понять это достаточно уловить одну из самых распространенных “показательных” ситуаций:

Как выбрать устройство плавного пуска для электродвигателя

Источник питания не справляется со слишком тяжелым пуском. Например, сеть не способна выдавать требуемые мощности или обеспечивает выработку на максимальных уровнях функционирования, лампочки отключаются, срабатывают автоматические выключатели, отказываются запускаться некоторые контакторы, реле, генератор.

Как выбрать устройство плавного пуска для электродвигателя

Чтобы не допустить выхода электродвигателя из строя, рекомендуется как можно скорее настроить плавность запуска и торможения системы. Сделать это несложно, так как даже новичку под силу выбрать, установить и подключить устройство плавного пуска своими руками.

Как выбрать устройство плавного пуска для электродвигателя

Основные параметры и характеристики УПП

Ниже в тексте будут приведены схемы аппаратов плавного запуска для изучения и собственноручного изготовления. Для тех, кто не готов осуществить плавный пуск асинхронного электродвигателя своими руками, полагаясь на готовое изделие, будет полезной информация о существующих разновидностях софт стартеров.

Как выбрать устройство плавного пуска для электродвигателя
Пример аналогово и цифрового УПП, в модульном исполнении (устанавливается на DIN-рейку)

Одним из главных параметров при выборе УПП является мощность обслуживаемого электромотора, выраженная в киловаттах. Не менее важным является время разгона и возможность регулировки интервала запуска. Данными характеристиками обладают все существующие софт стартеры. Более совершенные УПП являются универсальными и позволяют настраивать параметры мягкого запуска в широком диапазоне значений относительно характеристик двигателя и требований технологического процесса.

Как выбрать устройство плавного пуска для электродвигателя
Пример универсального софтстартера

В зависимости от типа софт стартера в них могут присутствовать различные опции, повышающие функциональность аппарата и позволяющие осуществлять контроль работы электродвигателя. Например, при помощи некоторых УПП возможно осуществление не только плавного запуска электромотора, но и его торможение. Более совершенные софт стартеры осуществляют защиту двигателя от перегрузок и позволяют также регулировать вращательный момент ротора при пуске, останове и работе.

Как выбрать устройство плавного пуска для электродвигателя
Пример различий в технических характеристиках различных УПП от одного производителя

Разновидности софт стартеров

По способу подключения УПП подразделяются на три вида:

  1. Однофазные. Регулируют пусковое напряжение на одной фазе для уменьшения пускового момента. Обладают ограниченной функциональностью и не снижают пусковой ток. В виду удешевления полупроводниковых силовых ключей, однофазные УПП применяются редко.

    Структурная схема однофазного УПП

  2. Двухфазные. Осуществляют регулировку пускового тока по двум фазам, что позволяет улучшить динамические характеристики запуска двигателя, но не решают проблему с несимметричной «просадкой» напряжения. Используется в основном радиолюбителями, осуществляющими плавный пуск асинхронного электродвигателя своими руками, схема устройства приведена ниже.

    Структурная схема двухфазного УПП

  3. Трехфазные. Дают максимально возможное уменьшение пускового момента, снижая пусковой ток до минимально возможной трехкратной перегрузки. Позволяют осуществлять большой набор функций помимо плавного разгона – регулировку момента, торможение, слежение за параметрами, дистанционное управление, защиту от тепловых перегрузок, и т. д.

    Структурная схема трехфазного УПП

УПП своими руками

Для самостоятельного изготовления УПП используемая схема плавного пуска асинхронного двигателя своими руками будет зависеть от возможности и навыков мастера. Самостоятельное смягчение пусковых перегрузок при помощи автотрансформатора доступно практически любому пользователю без специальных знаний, но данный способ является неудобным ввиду необходимости ручной регулировки старта электродвигателя. В продаже можно встретить недорогие устройства плавного запуска, которые придется самостоятельно подключить к электроинструменту, не обладая глубокими познаниями в радиотехнике. Пример работы до и после софт стартера, а также его подключение показано на видео ниже:

Современные софт стартеры имеют внутри сложную электронную начинку из множества электронных деталей, работающих под управлением микропроцессора. Поэтому для изготовления аналогичного УПП своими руками по имеющимся в сети интернет схемам необходимо не только мастерство радиолюбителя, но и навыки программирования микроконтроллеров.

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Скачать

Если тема интересует более глубоко, рекомендую ознакомиться с литературой, приведенной на странице Скачать.

Вот одна из книг, приведенных там:• Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. / Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. Одна из лучших книг, посвящённых основам электротехники. Изложение начинается с самых основ: объясняется, что такое напряжение, сила тока и сопротивление, приводятся указания по расчёту простейших электрических цепей, рассказывается о взаимосвязи и взаимозависимости электрических и магнитных явлений.Объясняется, что такое переменный ток, как устроен генератор переменного тока. Описывается, что такое конденсатор и что собой представляет катушка индуктивности, какова их роль в цепях переменного тока. Объясняется, что такое трёхфазный ток, как устроены генераторы трёхфазного тока и как организуется его передача. Отдельная глава посвящена полупроводниковым приборам: в ней речь идёт о полупроводниковых диодах, о транзисторах и о тиристорах; об использовании полупроводниковых приборов для выпрямления переменного тока и в качестве полупроводниковых ключей. Коротко описываются достижения микроэлектроники. Последняя треть книги целиком посвящена электрическим машинам, агрегатам и оборудованию: в 10 главе речь идёт о машинах постоянного тока (генераторах и двигателях); 11 глава посвящена трансформаторам; о машинах переменного тока (однофазных и трёхфазных, синхронных и асинхронных) подробно рассказывается в 12 главе; выключатели, электромагниты и реле описываются в главе 13; в главе 14 речь идёт о составлении электрических схем. Последняя, 15 глава, посвящена измерениям в электротехнике. Эта книга – отличный способ изучить основы электротехники, понять основополагающие принципы работы электрических машин и агрегатов., zip, 13.87 MB, скачан: 836 раз./

Ещё пособие по двигателям:• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 581 раз./

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: