Как зависит сопротивление от температуры

Полупроводники

А как зависит сопротивление от нагрева в полупроводниках? Для начала поговорим о терморезисторах. Это такие устройства, которые меняют свое электрическое сопротивление под воздействием тепла. У данного полупроводника температурный коэффициент сопротивления (ТКС) на порядок выше металлов. Как положительные, так и отрицательные проводники, они имеют определенные характеристики.

Где: 1 – это ТКС меньше нуля; 2 – ТКС больше нуля.

Чтобы такие проводники, как терморезисторы приступили к работе, за основу берут любую точку на ВАХ:

  • если температура элемента меньше нуля, то такие проводники используются в качестве реле;
  • чтобы контролировать изменяющийся ток, а также, какая температура и напряжение, используют линейный участок.

Терморезисторы применяются, когда осуществляется проверка и замер электромагнитных излучений, что осуществляются на сверхвысоких частотах. Благодаря этому данные проводники используют в таких системах, как пожарной сигнализации, проверке тепла и контроль употребления сыпучих сред и жидкостей. Те терморезисторы, у которых ТКС меньше нуля, применяются в системах охлаждения.

Теперь о термоэлементах. Как влияет явление Зеебека на термоэлементы? Зависимость заключается в том, что такие проводники функционируют на основе данного явления. Когда температура места соединения повышается при нагревании, на стыке замкнутой цепи появляется ЭДС. Таким образом, проявляется их зависимость и тепловая энергия обращается в электричество. Чтобы полностью понять процесс, рекомендую изучить нашу инструкцию о том, как сделать термоэлектрический генератор своими руками.

Такое устройство носит название термопары. Термоэлементы применяются как источники тока малой мощности, а также для измерения температур цифрового вычислительного прибора, у которых размеры должны быть маленькие, а показания точные.

Подробнее о полупроводниках, и влияние нагрева на их сопротивление рассказывается на видео:

Ну и последнее, о чем хотелось бы рассказать — холодильники и полупроводниковые нагреватели. Полупроводниковые спаи обеспечивают в конструкции разность температур до шестидесяти градусов. Благодаря этому и был сконструирован холодильный шкаф. Температура охлаждения в такой камере достигает – 16 градусов. В основу работы элементов лежит применение термоэлементов, через которые проходит электрический ток.

Вот мы и рассмотрели зависимость сопротивления проводника от температуры. Надеемся, предоставленная информация была для вас понятной и полезной!

Наверняка вы не знаете:

  • Что такое цветовая температура светодиодных ламп
  • Диэлектрические потери в диэлектриках
  • Сравнение характеристик мультиметров

Металлический термометр сопротивления

Представляет собой резистор, изготовленный из металлической проволоки или металлической плёнки на диэлектрической подложке и имеющий известную зависимость электрического сопротивления от температуры.

Наиболее точный и распространённый тип термометров сопротивления — платиновые термометры. Это обусловлено тем, что платина имеет стабильную и хорошо изученную зависимость сопротивления от температуры и не окисляется в воздушной среде, что обеспечивает их высокую точность и воспроизводимость. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом 0,003925 1/К при 0 °C.

В качестве рабочих средств измерений применяются также медные и никелевые термометры сопротивления. Технические требования к рабочим термометрам сопротивления изложены в стандарте ГОСТ 6651-2009 (Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы номинальных статических характеристик (НСХ) и стандартные зависимости сопротивление-температура. ГОСТ 6651-2009 соответствует международному стандарту МЭК 60751 (2008). В этих стандартах, в отличие от ранее действующих стандартов не нормированы номинальные сопротивления при нормальных условиях. Начальное сопротивление изготовленного термосопротивления может быть произвольным с некоторым допуском.

Промышленные платиновые термометры сопротивления в большинстве случаев считаются имеющими стандартную зависимость сопротивление-температура (НСХ), что обеспечивает погрешность не более 0,1 °C (класс термосопротивлений АА при 0 °C).

Термометры сопротивления изготовленные в виде напыленной на подложку металлической плёнки отличаются повышенной вибропрочностью, но меньшим диапазоном рабочих температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов, составляет 660 °C (класс С), для плёночных — 600 °C (класс С).

Зависимость сопротивления проводника от температуры

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

  1. возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
  2. изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

\(~\rho_t = \rho_0 (1 + \alpha t) ,\)

\(~R_t = R_0 (1 + \alpha t) ,\)

где ρ, ρt — удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R, Rt — сопротивления проводника при 0 °С и t °С, α — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К-1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Температурный коэффициент сопротивления вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.

\(~\mathcal h \alpha \mathcal i = \frac{1 \cdot \Delta \rho}{\rho \Delta T} ,\)

где \(~\mathcal h \alpha \mathcal i\) — среднее значение температурного коэффициента сопротивления в интервале ΔΤ.

Для всех металлических проводников α > 0 и слабо изменяется с изменением температуры. У чистых металлов α = 1/273 К-1. У металлов концентрация свободных носителей зарядов (электронов) n = const и увеличение ρ происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.

Для растворов электролитов α < 0, например, для 10%-ного раствора поваренной соли α = -0,02 К-1. Сопротивление электролитов с ростом температуры уменьшается, так как увеличение числа свободных ионов из-за диссоциации молекул превышает рост рассеивания ионов при столкновениях с молекулами растворителя.

Формулы зависимости ρ и R от температуры для электролитов аналогичны приведенным выше формулам для металлических проводников. Необходимо отметить, что эта линейная зависимость сохраняется лишь в небольшом диапазоне изменения температур, в котором α = const. При больших же интервалах изменения температур зависимость сопротивления электролитов от температуры становится нелинейной.

Графически зависимости сопротивления металлических проводников и электролитов от температуры изображены на рисунках 1, а, б.

Рис. 1

При очень низких температурах, близких к абсолютному нулю (-273 °С), сопротивление многих металлов скачком падает до нуля. Это явление получило название сверхпроводимости. Металл переходит в сверхпроводящее состояние.

Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена.

Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Сопротивление проводника

По своему сопротивлению тела делятся на три класса: проводники, непроводники (изоляторы) и полупроводники. Это деление условно, так как в природе не существует абсолютных проводников и абсолютных изоляторов.

Сопротивление проводника зависит от следующих факторов: рода материала, размеров, примесей, деформаций, температуры.

Сопротивление однородного проводника длиной l и сечения S составляет (при заданной температуре):

R = ρ l S , R=\rho \frac{l}{S}, R=ρSl​,

где ρ ρ ρ (Ом·м/м2 или Ом·м) – коэффициент пропорциональности, его еще называют удельным сопротивлением материала, поскольку при l = 1 l = 1 l=1 и S = 1 S= 1 S=1 имеем ρ = R ρ=R ρ=R. В технике ρ ρ ρ выражают в единицах Ом·мм/м2

Величину, обратную к удельному сопротивлению, то есть γ = 1 / ρ γ = 1/ ρ γ=1/ρ, называют удельной проводимостью материала. Наименьшее ρ ρ ρ имеют серебро, медь, алюминий. В электротехнике проводники изготавливаются из меди или алюминия. При одинаковом сопротивлении алюминиевый проводник толще медного, но имеет меньшую плотность; кроме того, он дешевле и поэтому его целесообразнее использовать.

Формула как найти

Согласно положению из любого учебного пособия по электродинамики, удельное сопротивление материала проводника формула равна пропорции общего сопротивления проводника на площадь поперечного сечения, поделенного на проводниковую длину

Важно понимать, что на конечный показатель будет влиять температура и степень материальной чистоты. К примеру, если в медь добавить немного марганца, то общий показатель будет увеличен в несколько раз

Как зависит сопротивление от температуры
Главная формула расчета

Интересно, что существует формула для неоднородного изотропного материала. Для этого нужно знать напряженность электрополя с плотностью электротока. Для нахождения нужно поделить первую величину на другую. В данном случае получится не константа, а скалярная величина.

Как зависит сопротивление от температуры
Закон ома в дифференциальной форме

Есть другая, более сложная для понимания формула для неоднородного анизотропного материала. Зависит от тензорного координата.

Вам это будет интересно Особенности электротока переменного напряжения

Важно отметить, что связь сопротивления с проводимостью также выражается формулами. Существуют правила для нахождения изотропных и анизотропных материалов через тензорные компоненты

Они показаны ниже в схеме.

Как зависит сопротивление от температуры
Связь с проводимостью, выраженная в физических соотношениях

Таблица удельных сопротивлений проводников

Материал проводника Удельное сопротивление ρ в
Серебро
Медь
Золото
Латунь
Алюминий
Натрий
Иридий
Вольфрам
Цинк
Молибден
Никель
Бронза
Железо
Сталь
Олово
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Титан
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
Фехраль
Висмут
Хромаль
0,015
0,0175
0,023
0,025… 0,108
0,028
0,047
0,0474
0,05
0,054
0,059
0,087
0,095… 0,1
0,1
0,103… 0,137
0,12
0,22
0,42
0,43… 0,51
0,5
0,6
0,94
1,05… 1,4
1,15… 1,35
1,2
1,3… 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм2. Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм2.

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм2.

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм2.

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм2. Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 — 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.


температурный коэффициент сопротивления

это изменение сопротивления проводника при его нагревании,
приходящееся на 1 Ом первоначального сопротивления и на 1° температуры,
обозначается буквой α.

Если при температуре t сопротивление проводника равно r, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Платиновые измерители температуры

Несмотря на сравнительно высокую стоимость, достаточно часто производители применяют именно этот материал. Почему выбирают это решение, понятно из перечня следующих преимуществ:

  • использование платины позволяет получить линейный график зависимости удельного сопротивления от температуры;
  • температурный коэффициент серийных (эталонных) изделий составляет 0,00385 (0,003925) °C-1;
  • рабочий диапазон в °C – от -196 до +600.

Упомянутый в списке температурный коэффициент (Тк) рассчитывают по формуле:

Тк = (Rи – Rб)/((Ти – Тб) * 1/Rб),

где:

  • Rи (Rб) – измеренное (базовое) сопротивление;
  • Ти (Тб) – соответствующие значения температуры.

Из выражения понятно, что уменьшение коэффициента сопровождается увеличением точности. Базовое электрическое сопротивление определяют при T=0°C.

Физический смысл электрического сопротивления

Сопротивление – главнейший электрический параметр любого предмета. Очевидно, что оно зависит от площади поперечного сечения и длины. Чтобы образно представить процессы, возникающие в проводнике, достаточно вообразить школьный коридор, по которому группа учеников пытается пробежать в направлении нужной аудитории. Если им ничто не препятствует, то путь этот будет быстрым и легким. А вот если дело происходит во время большой перемены, то задача усложняется, школьник наталкиваются на своих товарищей, стоящих или бегающих по коридору, и чем больше окружающая суматоха, тем труднее бежать. Преодолевая путь, школьники трудятся, маневрируют, толкаются, им становится жарко. Говоря языком физики, чем выше энтропия (то есть степень беспорядка), тем больше сопротивление. Она зависит от количества учеников в коридоре. Для того чтобы оценить количество преград на пути электрического тока, был введен такой термин, как удельное сопротивление, величина которого показывает, насколько заряженным частицам будет легко преодолевать единичный отрезок длины проводника через единичное же сечение.

Явление сверхпроводимости

А что будет, если температуру материала уменьшать? Удельное сопротивление будет уменьшаться. Есть предел, до которого уменьшается температура, называемый абсолютным нулем. Это —273°С. Ниже этого предела температур не бывает. При этом значении удельное сопротивление любого проводника равно нулю.

При абсолютном нуле атомы кристаллической решетки перестают колебаться. В итоге электронное облако движется между узлами решетки, не соударяясь с ними. Сопротивление материала становится равным нулю, что открывает возможности для получения бесконечно больших токов в проводниках небольших сечений.

Явление сверхпроводимости открывает новые горизонты для развития электротехники. Но пока еще существуют сложности, связанные с получением в бытовых условиях сверхнизких температур, необходимых для создания этого эффекта. Когда проблемы будут решены, электротехника перейдет на новый уровень развития.

Где может пригодиться этот закон Джоуля-Ленца?

В электротехнике есть понятие длительно допустимого тока протекающего по проводам. Это такой ток, который провод способен выдержать длительное время (то есть, бесконечно долго), без разрушения провода (и изоляции, если она есть, потому что провод может быть и без изоляции). Конечно, данные вы теперь можете взять из ПУЭ (Правила устройства электроустановок), но получали эти данные исключительно на основе закона Джоуля-Ленца.

В электротехнике так же используются плавкие предохранители. Их основное качество – надёжность срабатывания. Для этого используется проводник определенного сечения. Зная температуру плавления такого проводника можно вычислить количество теплоты, которое необходимо, чтобы проводник расплавился от протекания через него больших значений тока, а вычислив ток, можно вычислить и сопротивление, которым такой проводник должен обладать. В общем, как вы уже поняли, применяя закон Джоуля-Ленца можно рассчитать сечение или сопротивление (величины взаимозависимы) проводника для плавкого предохранителя.

А ещё, помните, мы говорили про . Там на примере лампочки я рассказывал парадокс, что более мощная лампа в последовательном соединении светит слабее. И наверняка помните почему: падение напряжения на сопротивлении тем сильнее, чем меньше сопротивление. А поскольку мощность — это , а напряжение очень сильно падает, то и выходит, что большое сопротивление выделит большое количество тепла, то есть, току придется больше потрудиться, чтобы преодолеть большое сопротивление. И количество тепла, которое выделит ток при этом можно посчитать с помощью закона Джоуля-Ленца. Если брать последовательное соединение сопротивлений, то использовать лучше выражение через квадрат тока, то есть, изначальный вид формулы:

А для параллельного соединения сопротивлений, поскольку ток в параллельных ветвях зависит от сопротивления, в то время, как напряжение на каждой параллельной ветви одинаковое, то формулу лучше всего представить через напряжение:

Примерами работы закона Джоуля-Ленца вы все пользуетесь в повседневной жизни – в первую очередь это всевозможные нагревательные приборы. Как правило, в них используется нихромовая проволока и толщина (поперечное сечение) и длина проводника подбираются с учётом того, чтобы длительное тепловое воздействие не приводило к стремительному разрушению проволоки. Точно таким же образом добиваются свечения вольфрамовой нити в лампе накаливания. По этому же закону определяют степень возможного нагрева практически любого электротехнического и электронного устройства.

В общем, несмотря на кажущуюся простоту, закон Джоуля-Ленца играет в нашей жизни очень огромную роль. Этот закон дал большой толчок для теоретических расчётов: выделение тепла токами , вычисление конкретной температуры дуги, проводника и любого другого электропроводного материала, потери электрической мощности в тепловом эквиваленте и т.д.

Вы можете спросить, а как перевести Джоули в Ватты и это довольно частый вопрос в интернете. Хотя вопрос несколько неверный, читая далее, вы поймёте почему. Ответ довольно прост: 1 дж = 0.000278 Ватт*час, в то время, как 1 Ватт*час = 3600 Джоулей. Напомню, что в Ваттах измеряется потребляемая мгновенная мощность, то есть непосредственно используемая пока включена цепь. А Джоуль определяет работу электрического тока, то есть мощность тока за промежуток времени. Помните, в законе Ома я приводил аллегорическую ситуацию. Ток – деньги, напряжение – магазин, сопротивление – чувство меры и денег, мощность – количество продуктов, которые вы сможете на себе унести (увезти) за один раз, а вот как далеко, как быстро и сколько раз вы сможете их увезти – это работа. То есть, сравнить работу и мощность никак не получается, но можно выразить в более понятных нам единицам: Ваттах и часах.

Думаю, что теперь вам не составит труда применить закон Джоуля-Ленца в практике и теории, если таковое потребуется и даже сделать перевод Джоулей в Ватты и наоборот. А благодаря пониманию, что закон Джоуля-Ленца это произведение электрической мощности на время, вы сможете более легко его запомнить и даже, если вдруг забыли основную формулу, то помня всего лишь закон Ома можно снова получить закон Джоуля-Ленца. А я на этом с вами прощаюсь.

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Физический смысл сопротивления

Протекание электрического тока через проводник приводит к направленному движению свободных электронов. Наличие свободных электронов зависит от самого вещества и берется из таблицы Д. И. Менделеева , а именно из электронной конфигурации элемента. Электроны начинают ударяться о кристаллическую решетку элемента и передают энергию последней. В этом случае возникает тепловой эффект при действии тока на проводник.

При этом взаимодействии они замедляются, но затем под действием электрического поля, которое их ускоряет, начинают двигаться с той же скоростью. Электроны сталкиваются огромное количество раз. Этот процесс и называется сопротивлением проводника.

Следовательно, электрическим сопротивлением проводника считается физическая величина, характеризующая отношение напряжения к силе тока.

Что такое электрическое сопротивление: величина, указывающая на свойство физического тела преобразовывать энергию электрическую в тепловую, благодаря взаимодействию энергии электронов с кристаллической решеткой вещества. По характеру проводимости различаются:

  1. Проводники (способны проводить электрический ток, так как присутствуют свободные электроны).
  2. Полупроводники (могут проводить электрический ток, но при определенных условиях).
  3. Диэлектрики или изоляторы (обладают огромным сопротивлением, отсутствуют свободные электроны, что делает их неспособными проводить ток).

Обозначается эта характеристика буквой R и измеряется в Омах (Ом). Применение этих групп веществ является очень значимым для разработки электрических принципиальных схем приборов.

Нагревание проводников электрическим током. Закон Джоуля—Ленца

На одном из прошлых уроков мы с вами говорили о действиях электрического тока, которые он способен оказывать, протекая в различных средах:

Как зависит сопротивление от температуры

Также мы с вами говорили о том, что тепловое действие ток производит и любой среде: твёрдой, жидкой и газообразной. Нагревание среды происходит потому, что разогнавшиеся под действием электрического поля свободные электроны в металлах, или ионы в проводящих ток растворах, сталкиваются с молекулами или атомами проводника и отдают им часть своей энергии. Так, энергия электрического поля переходит во внутреннюю энергию проводника.

Обратимся теперь к количественной стороне вопроса: сколько теплоты выделяется при прохождении тока определённой силы в данном конкретном проводнике?

Ответ на него мы найдём, применив закон сохранения энергии. Если в результате протекания тока в проводнике увеличивается только внутренняя энергия проводника, то есть если ток произведёт лишь тепловое действие, то выделенное в проводнике количество теплоты должно быть равно работе, совершенной за это время электрическими силами. Тогда мы можем рассчитывать выделенную теплоту по формулам, полученными нами для работы электрического тока:

Как зависит сопротивление от температуры

Гораздо сложнее будет ситуация, когда протекание тока в проводнике вызывает не только его нагревание, но и создаёт другие виды энергии. Примером этому является работа любого электродвигателя или электромотора. Согласно закону сохранения и превращения энергии работа, совершенная электрическими силами за некоторый промежуток времени, вызывает не только нагревание обмотки электродвигателя (кстати, не очень большое), но и появление весьма значительного количества механической энергии:

Аналогичная ситуация возникает при зарядке аккумулятора, где за счёт работы электрических сил происходит не только нагревание заряжаемого аккумулятора, но и накопление в нем химической энергии:

Однако очевидно, что количество теплоты, выделяющееся в проводнике, должно зависеть от сопротивления проводника. Проверим это предположение на опыте. В цепь из источника тока, амперметра и реостата включим последовательно три проводника одинаковой длины и площади поперечного сечения: из нихрома, никелина и меди. При увеличении силы тока заметим, что нихромовый проводник нагревается почти до белого каления, никелиновый лишь слегка краснеет, а медный остаётся темным.

Как зависит сопротивление от температуры

Действительно, ведь чем больше сопротивление проводника, тем «труднее» двигаться зарядам. При этом совершается большая работа по их перемещению и, следовательно, проводник больше нагревается.

А как узнать количество выделенной теплоты в таких случаях, ведь здесь очевидно только то, что эта теплота меньше работы электрических сил? Ответ на этот вопрос был найден в 1841 г. английским учёным Дж. Джоулем и независимо от него в 1842 г. русским учёным Э. Х. Ленцем. На основании многочисленных опытов ими было установлено, что количество теплоты, выделяемое при прохождении электрического тока в любом проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени протекания тока:

Это и есть закон Джоуля — Ленца.

Проверить его справедливость можно с помощью следующей экспериментальной установки. В калориметр, содержащий 100 г воды при температуре 20 оС, поместим нихромовую проволоку, концы которой подключим в цепь, состоящую из источника тока, амперметра и ключа. С помощью вольтметра будем измерять напряжение на концах проводника, а с помощью секундомера — время эксперимента.

Как зависит сопротивление от температуры

Как видим, количество теплоты, полученное водой, равно количеству теплоты, которое выделилось в проводнике

, что подтверждает правоту закона Джоуля — Ленца.

Формулой Q=I2Rt удобно пользоваться при расчёте количества теплоты, которое выделяется в проводниках при последовательном соединении, так как в этом случае ток во всех проводниках один и тот же. Поэтому при последовательном соединении нескольких проводников в каждом из них выделяется количество теплоты, пропорциональное сопротивлению проводника:Q~R. При параллельном соединении проводников ток в них различен, а вот напряжение на концах этих проводников одно и то же. Поэтому расчёт количества теплоты при таком соединении удобнее вести по формуле:

Эта формула показывает, что при параллельном соединении в каждом проводнике выделяется количество теплоты, обратно пропорциональное сопротивлению проводника: Q~ 1/R.

Формула как найти

Согласно положению из любого учебного пособия по электродинамики, удельное сопротивление материала проводника формула равна пропорции общего сопротивления проводника на площадь поперечного сечения, поделенного на проводниковую длину

Важно понимать, что на конечный показатель будет влиять температура и степень материальной чистоты. К примеру, если в медь добавить немного марганца, то общий показатель будет увеличен в несколько раз

Как зависит сопротивление от температуры
Главная формула расчета

Интересно, что существует формула для неоднородного изотропного материала. Для этого нужно знать напряженность электрополя с плотностью электротока. Для нахождения нужно поделить первую величину на другую. В данном случае получится не константа, а скалярная величина.

Как зависит сопротивление от температуры
Закон ома в дифференциальной форме

Есть другая, более сложная для понимания формула для неоднородного анизотропного материала. Зависит от тензорного координата.

Вам это будет интересно Паяльники для пайки микросхем

Важно отметить, что связь сопротивления с проводимостью также выражается формулами. Существуют правила для нахождения изотропных и анизотропных материалов через тензорные компоненты

Они показаны ниже в схеме.

Как зависит сопротивление от температуры
Связь с проводимостью, выраженная в физических соотношениях

Высоколегированные стали

Высоколегированные стали имеют удельное электрическое сопротивление в несколько раз выше чем углеродистые и низколегированные. По данным таблицы видно, что при температуре 20°С его величина составляет (30…86)·10-8 Ом·м.

При температуре 1300°С сопротивление высоко- и низко- легированных сталей становится почти одинаковым и не превышает 131·10-8 Ом·м. Удельное электрическое сопротивление высоколегированных сталей ρэ·108, Ом·м

Марка стали 20 100 300 500 700 900 1100 1300
Г13 68,3 75,6 93,1 95,2 114,7 123,8 127 130,8
Г20Х12Ф 72,3 79,2 91,2 101,5 109,2
Г21Х15Т 82,4 95,6 104,5 112 119,2
Х13Н13К10 90 100,8 109,6 115,4 119,6
Х19Н10К47 90,5 98,6 105,2 110,8
Р18 41,9 47,2 62,7 81,5 103,7 117,3 123,6 128,1
ЭХ12 31 36 53 75 97 119
40Х10С2М (ЭИ107) 86 91 101 112 122
Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: