Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?

Содержание

Как понизить напряжение с 24(12) до 5 ???

Ничего понижать не надо. Подключи последовательно (со светодиодами) резистор 1КОм.

Светодиоды не питаются напряжением! Они светятся, если через них идёт ток. Обычно 3…15 мА.
А напряжение может быть любое, хоть 220 вольт. Физику надо бы знать! Поэтому достаточно соединить светодиоды последовательно с резистором 2 кОм и подключить к Источнику, соблюдая полярность (иначе не светятся) . При напряжении 24 вольта в гирлянде пойдет ток 12 мА ( 24в : 2000 Ом = 0.012А ) и должно быть не более десяти светодиодов и один резистор. При 12 вольтах …не более пяти последовательно. Таких гирлянд можно подключать на клеммы питания сколько угодно.
А Вы …понизить напряжение…

Обычно светодиоды работают от 2-3 вольт, разве что у тебя какие-то очень мощные. В любом случае, ты можешь соединять их последовательно, в расчете по 4 вольта на каждый. Для 12 вольт — три штуки в цепочке, и сколько надо цепочек — параллельно между собой. Для 24 вольт — 6 штук в цепочке. Они самостоятельно поделят напряжение примерно поровну между собой (плюс-минус какие-то проценты, из-за неидентичности своей) . В этом случае никаких дополнительных деталей не потребуется. Если тебе не нужно зажигать столько диодов, тогда напряжение нужно понижать, и для этого вполне сойдет обычное сопротивление. Чтобы узнать, какое именно, произведи опыт с переменным резистором заведомо бОльшего номинала — плавно уменьшай сопротивление, следя за током через светодиод. Найдя нужное значение, замени переменник постоянным резистором.

ВЫБОР МОП-ТРАНЗИСТОРА

Подставив приведенные выше значения TJMAX и TAMAX в уравнение 7, получим максимальный подъем температуры для МОП-транзистора 55°C. Максимальная мощность, рассеиваемая МОП-транзистором, может быть рассчитана, исходя из допустимого максимума подъема температуры МОП-транзистора:

Мощность, рассеиваемая МОП-транзистором, является следствием ненулевого сопротивления открытого канала сток-исток и потерь коммутации. Потери от сопротивления открытого канала могут быть рассчитаны по формуле:

Допуская, что потери открытого канала составляют приблизительно 60% от всех потерь, приходящих на долю МОП-транзистора, и преобразуя с учетом этого уравнение 10 в уравнение 11, максимально допустимое сопротивление открытого канала при 25°C:

Потери коммутации составляют меньшую часть рассеиваемой мощности МОП-транзистора, но, тем не менее, они тоже должны быть приняты в расчет. Следующий расчет потерь коммутации дает достаточно грубое приближение и поэтому не заменяет оценку в лабораторных условиях. Предпочтителен тест с применением термодатчика, закрепленного на транзисторе P1 для достоверного контроля температуры.

Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?

Защита разрядниками

В сигнальных линиях, например на телефонных станциях или интернет распределителях LAN, можно найти газовые искровые разрядники, в которых при превышении определенного напряжения зажигается дуга с низким сопротивлением, ограничивающая напряжение на искровом промежутке.

Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?

Искровой разрядник (грозозащитный разрядник) выдерживает самые высокие энергии, но работает с некоторой задержкой и пропускает начальный импульс порядка 1 кВ. Часто поэтому между грозозащитным разрядником и варистором имеется связка, а иногда и TVS-диод. Они подключаются не напрямую, а через дроссели. Элементы защиты сопровождаются дополнительными цепями с сопротивлениями и индуктивностями, которые ограничивают ток или уменьшают скорость нарастания тока. Подробнее о схемотехнике защитных устройств читайте на форуме.

Форум по схемам

Меры по снижению тока холостого хода

Основным источником возникновения тока холостого хода является конструкция магнитопровода. В ферромагнитном материале, помещенном в переменное электрическое поле, наводятся вихревые токи электромагнитной индукции – токи Фуко, которые нагревают материал сердечника.

Для снижения вихревых потерь материал сердечника изготавливают из тонких пластин, отделенных друг от друга изолирующим слоем, которую выполняет оксидная пленка на поверхности. Сам материал производится по специальной технологии, с целью улучшения магнитных свойств (увеличения значения магнитного насыщения, магнитной проницаемости, снижения потерь на гистерезис).

Обратная сторона использования большого количества пластин состоит в том, что в местах стыков происходит разрыв магнитного потока, в результате чего возникает поле рассеивания. Поэтому для наборных сердечников важна тщательная подгонка отдельных пластин друг к другу. В ленточных разрезных магнитопроводах отдельные части подгоняются друг к другу при помощи шлифовки, поэтому при сборке конструкции нельзя менять местами части сердечника.

Поле рассеивания обмотки и междувитковую емкость снижают путем изменения конструкции обмоток и пространственного размещения их частей относительно друг друга.

Снижение потерь также достигается при возможно более полном заполнении свободного окна сердечника. При этом масса и габариты устройства стремятся к оптимальным показателям.

Понизить напряжение постоянного тока с 24 до 20

Собрать стабилизатор на 20 вольт. Или преобразователь 24х220, и родной блок питания.

повысить до 220 и юзать родной зарядник — самый грамотный подход, ибо в родном хорошая стабилизация в пределах 150-240 вольт, то есть вы можете «промахнуться» с напряжением в пределах почти 100 вольт — и ноуту ничего не будет, зараядник выдаст ровно 20вольт! Если же вы будете понижать до 20 вольт сами и промахнетесь хотя бы вольта на два — последствия могут быть плачевные

только импульсный стабилизатор!! ! больше ни какой. я думаю проще купить. 12-18вольт есть, думаю и на твой должен быть. если нет то собери подобный.если что можно запитать и от одного аккумулятора

Ты на зарядке ноута померь напряжений под нагрузкой ноута оно может быть и больше 20 вольт посмотри, какое напряжение на акб ноута. Даже если на акб ноута 20 вольт то на зарядку этого акб требуется 23-24 вольта

touch.otvet.mail.ru

Повышение переменного напряжения

Повысить переменное напряжение можно двумя способами – использовать трансформатор или автотрансформатор. Основная разница между ними состоит в том, что при использовании трансформатора есть гальваническая развязка между первичной и вторичной цепью, а при использовании автотрансформатора её нет.

Интересно! Гальваническая развязка – это отсутствие электрического контакта между первичной (входной) цепью и вторичной (выходной).

Рассмотрим часто возникающие вопросы. Если вы попали за границы нашей необъятной родины и электросети там отличаются от наших 220 В, например, 110В, то чтобы поднять напряжение со 110 до 220 Вольт нужно использовать трансформатор, например, такой как изображен на рисунке ниже:

Следует сказать о том, что такие трансформаторы можно использовать «в любую сторону». То есть, если в технической документации вашего трансформатора написано «напряжение первичной обмотки 220В, вторичной – 110В» – это не значит, что его нельзя подключить к 110В. Трансформаторы обратимы, и, если на вторичную обмотку подать, те же 110В – на первичной появится 220В или другое повышенное значение, пропорциональные коэффициенту трансформации.

Следующая проблема, с которой многие сталкиваются – низкое напряжение в электросети, особенно часто это наблюдается в частных домах и в гаражах. Проблема связана с плохим состоянием и перегрузкой линий электропередач. Чтобы решить эту проблему – вы можете использовать ЛАТР (лабораторный автотрансформатор). Большинство современных моделей могут как понижать, так и плавно повышать параметры сети.

Схема его изображена на лицевой панели, а на объяснениях принципа действия мы останавливаться не будем. ЛАТРы продаются разных мощностей, тот что на рисунке примерно на 250-500 ВА (вольт-амперы). На практике встречаются модели до нескольких киловатт. Такой способ подходит для подачи номинальных 220 Вольт на конкретный электроприбор.

Если вам нужно дёшево поднять напряжение во всем доме, ваш выбор — релейный стабилизатор. Они также продаются с учетом разных мощностей и модельный ряд подходит для большинства типовых случаев (3-15 кВт). Устройство основано также на автотрансформаторе. О том, как выбрать стабилизатор напряжения для дома, мы рассказали в статье, на которую сослались.

Популярные статьи  Какой ток потребляет двигатель из сети при пуске и работе

Схема как сделать из постоянного тока переменный — Портал о стройке

Люди всего земного шара в настоящее время имеют возможность получить знания в различных технических направлениях. Нам всем остается лишь воспользоваться знаниями, современной имеющейся базой научных открытий как отечественных так и зарубежных ученых.

Чтобы получить необходимые знания для разрешения каких-либо технических вопросов, мы обращаемся к тому или иному источнику информации. Человек, допустим открывает учебник по электротехнике и получает различную техническую информацию, к примеру:

  • переменное напряжение является синусоидальным напряжением;
  • коллекторный двигатель может работать как от переменного так и от постоянного тока;
  • каждый диод обладает своим потенциальным барьером

и так далее.

И зачастую получается, что человеку трудно понять прочитанное. Он может запомнить информацию, но не осознавать того, что он прочитал. То-есть, кроме того что мы прочитали, нам необходимо понять явления физики.

Для чего нужен постоянный ток

Что из себя представляет постоянный ток? В чем различие между переменным и постоянным током? Чтобы нам ответить на эти и другие вопросы, — нам нужно вспомнить физику и электротехнику.

Постоянный ток — название происходит от самого слова постоянный, то-есть ток, в котором отсутствуют пульсации, — в отличие от переменного тока. К таким источникам энергии \постоянного тока\ относятся химические источники тока:

  • первичные источники;
  • электрохимические аккумуляторы.

Первичные источники тока — это различные батарейки \разового пользования\, не подлежащие своему восстановлению в первоначальное состояние — после их разрядки.

К электрохимическим аккумуляторам относятся различные типы аккумуляторов, способность которых проявляется в возвращении их в свое первоначальное химическое состояние в процессе воздействия электрического тока, — зарядки аккумулятора. Другими словами, зарядили:

  • аккумулятор авто;
  • аккумулятор шуруповерта;
  • аккумуляторы соединенные в батареи — для телефонной связи,

— в результате, получаем неоднократную возможность в их дальнейшей эксплуатации, эксплуатации источников постоянного тока.

Какие преимущества мы находим в применении постоянного тока? Данную электрическую энергию можно аккумулировать, допустим, для той же самой ветряной электростанции, — при отсутствии ветра.

Следовательно, вывод такой, что в приведенных источниках электрической энергии отсутствует частота, — в виду отсутствия пульсаций тока.

Где еще можно наблюдать применение постоянного тока? Постоянный ток необходим также для питания электродвигателей — работающих от постоянного тока. Электродвигатели постоянного тока применяются как тяговые двигатели, в которых допускается плавное вращение ротора, к примеру, в электровозе.

Вот мы и ответили на такой простой вопрос «для чего нужен постоянный ток».

Однополупериодный выпрямитель тока

Однополупериодный выпрямитель тока — это наиболее упрощенная схема выпрямления тока.

рис.1

рис.2

Рассмотрим две схемы, разница которых состоит в том, что в первой схеме однополупериодного выпрямителя тока, — параллельно нагрузке подключен конденсатор. Первая схема \рис.1\ состоит из:

и подключенной нагрузки ко вторичной обмотке трансформатора.

Во второй схеме однополупериодного выпрямителя тока, цепь вторичной обмотки трансформатора состоит из диода и подключенной нагрузки \рис.2\. В электротехнике, диоды состоящие в схеме, — еще называют вентилями. Если в своих описаниях схем Вы даете пояснение и заменяете слово «диод» словом «вентиль», — разницы не будет никакой.

На представленных кривых изменения напряжения \рис.1\ видно, что:

  • переменное напряжение в схеме наблюдается перед вентилем \диодом\;
  • после вентиля напряжение пульсирующее — положительной полярности

и после конденсатора, параллельно включенного перед нагрузкой, — напряжение выглядит как бы сглаживающим. То-есть конденсатор состоящий в схеме после диода, — сглаживает пульсацию. Поэтому, конденсаторы еще называют фильтрами.

Но для питания отдельных схем-блоков, к примеру в радиотехнике такие схемы выпрямления тока не подходят, так как пульсации будут создавать фон переменного тока, а это в свою очередь будет приводить к искажению звукового сигнала.

Для питания схем:

  • телевизоров;
  • транзисторных радиоприемников;
  • электронных приборов,

— схемы выпрямления, в целом состоят из так называемых реактивных элементов — дросселей и конденсаторов.

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

Как понизить постоянное и переменное напряжение – обзор способов – Электро Помощь

Как понизить переменное напряжение конденсатором, как его рассчитать?

  • 25 мкф *400вольт и сопративление от бросков тока при включени 2 ома 5 ват
  • Я обычно провожу приблизительный расчт конденсатора, исходя из расчта реактивного сопротивления переменному току Z=1/F*C, где F — частота переменного тока в цепи в Гц, а C — мкость конденсатора в Фарадах, Z — сопротивление в омах. А потом можно рассчитать падение напряжения на участке цепи по закону ома: U=I*Z, где U — напряжение в вольтах, I — ток в амперах в приборе питания. Теперь, если вычесть из общего (сетевого) напряжения питания U, то полученное приблизительное напряжение на участке цепи напряжение, которое будет на нагрузке или потребителе питания для которого эти расчты делались. Поскольку мы пользуемся переменным током, то конденсаторы должны быть не полярными на рабочее напряжение близкое или больше расчтного U. Для цепей постоянного тока такой вариант понижения напряжения не годится, так как конденсатор работает только в цепях переменного или импульсного тока.
  • Два способа.Один — сделать мкостной делитель. Он рассчитывается так же, как и резистивный делитель (с учтом того, что падение напряжения на конденсаторе ОБРАТНО пропорционально его мкости). Второй — поставить гасящий конденсатор последовательно с нагрузкой. мкость рассчитывается исходя из закона Ома для цепи переменного тока.Но это вс имеет смысл только при сравнительно небольших токах. Если вот такая лампочка, то ток потребления у не почти 3 ампера (100/36). И чтоб на частоте 50 Гц погасить 175 вольт при ВОТ ТАКОМ токе, нужна довольно большая мкость — 50 мкФ (при использовании делителя мкости потребуются ещ большего номинала). Причм электролитический конденсатор тут использовать нельзя — мкость должна работать на переменном напряжении! Значит — бумажные. А это очень громоздко.Так что quot;идите как все, по камушкамquot;. Поставьте трансформатор.
  • Я бы вам посоветовал подобрать конденсатор для вашей нагрузки. Поключите питание к вашей нагрузке через конденсатор минимальной емкости. И измерьте напряжение на нагрузке, если напряжение маловато, тогда емкость следует увеличить. Емкость можно увеличить путем паралельного добавления других конденсаторов. При паралельном соеднении емкость слагается, а чем больше емкость, тем меньше получается сопротивление в конденсаторе для переменного тока. И ещ что следует учесть, что напряжение указанное на конденсаторе не должно быть меньше напряжения питания, лучше пусть будет больше.

Я могу посоветовать следующее:

Если предполагаются небольшие нагрузки, то можно прибегнуть к установке так называемого разделителя напряжения из двух сопротивлений.

Если же предполагаются большие нагрузки, то в данном случаем поможет инвертор или же трансформатор.

Как понизить напряжение: способы и приборы – Статейный холдинг

Нужно знать, как понизить напряжение в цепи, чтобы не повредить электрические приборы. Всем известно, что к домам подходит два провода – ноль и фаза. Это называется однофазной сетью. Трехфазная крайне редко используется в частном секторе и многоквартирных домах.

Популярные статьи  Соленоидный двигатель

https://youtube.com/watch?v=IIhXY6Oja68

Необходимости в ней просто нет, так как вся бытовая техника питается от сети переменного однофазного тока. Но вот в самой технике требуется делать преобразования – понижать переменное напряжение, преобразовывать его в постоянное, изменять амплитуду и прочие характеристики.

Именно эти моменты и нужно рассмотреть.

Делитель напряжения на индуктивностях

Если от середины первичной обмотки сделать отвод, то между ним и крайними выводами будет равное напряжение. И оно будет равно половине напряжения питания.

В этих формулах L1 и L2 – индуктивности первой и второй катушек, U1 – напряжение питающей сети в Вольтах, U(L1) и U(L2) – падение напряжения на первой и второй индуктивностях соответственно. Схема такого делителя широко применяется в цепях измерительных устройств.

Два простых способа снизить напряжение на электролампах

Если надоело постоянно менять перегоревшие лампы, воспользуйтесь одним из приведенных советов. Но во всех случаях успех достигается за счет существенного снижения напряжения.

В дневное и особенно в ночное время напряжение в сети нередко достигает 230-240В что приводит к ускоренному выгоранию нитей накала электроламп.

Как поднять бортовое напряжение-очень просто.

Куда же и каким образом ставится диод в цепь РН на генераторе, чтобы поднять напряжение в сети автомобиля и лучше заряжать аккумулятор ? Вот предлагаю простое решение, поднятие бортового напряжения, практически не куда не залезая в машине и ее схемы. Поискал в своих архивах и не нашел того материала, откуда я вычитал это решение. “Конструктивно регуляторы напряжения имеют верхнюю планку в 13.6В. Это обуславливается «старой» схемой подключения, с которой была скопирована новая и «благополучно усовершенствована». В ней необходимое напряжение бортовой сети, подаваемое на регулятор для сравнения, проходило через цепочку проводов. На них то оно и падало до нормы. По новой схеме мы имеем хронический недозаряд аккумулятора. Что с приходом зимы делает довольно-таки проблематичным запуск двигателя на морозе. А вот если поставить предпусковой подогреватель, запустить движок будет намного проще.

Напряжение питания светодиодов

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.

Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?

Теоретический метод

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.

Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе.

В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.

С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но, с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.

Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта. В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт.

Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.

Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет.

В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору. Текущие показания на экране и будут номинальным прямым напряжением светодиода.

Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно запитать светодиод «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.

И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?

Популярные статьи  Как собрать трехфазное вру для частного дома?

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.

Понижение напряжения постоянного тока

В практике питания бытовых приборов существует масса примеров работы электрических устройств от постоянного тока. Но номинал рабочего напряжения может существенно отличаться, к примеру, если из 36 В вам нужно получить 12 В, или в ситуациях, когда от USB разъема персонального компьютера нужно запитать прибор от 3 В вместо имеющихся 5 вольт.

Для снижения такого уровня от блока питания или другого источника почти вполовину можно использовать как простые методы – включение в цепь дополнительного сопротивления, так и более эффективные – заменить стабилизатор напряжения в ветке обратной связи.

Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?

Рис. 1. Замена резистора или стабилитрона

На рисунке выше приведен пример схемы блока питания, в котором вы можете понизить вольтаж путем изменения параметров резистора и стабилитрона. Этот узел на рисунке обведен красным кругом, но в других моделях место установки, как и способ подсоединения, может отличаться. На некоторых схемах, чтобы понизить напряжение вы сможете воспользоваться лишь одним стабилитроном.

Если у вас нет возможности подключаться к блоку питания – можно обойтись и менее изящными методами. К примеру, вы можете понизить напряжение за счет включения в цепь резистора или подобрать диоды, второй вариант является более практичным для цепей постоянного тока. Этот принцип основан на падении напряжения за счет внутреннего сопротивления элементов. В зависимости от соотношения проводимости рабочей нагрузки и полупроводникового элемента может понадобиться около 3 – 4 диодов.

Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?

Рис. 2. Понижение постоянного напряжения диодами

На рисунке выше показана принципиальная схема понижения напряжения при помощи диодов. Для этого они включаются в цепь последовательно по отношению к нагрузке. При этом выходное напряжение окажется ниже входного ровно на такую величину, которая будет падать на каждом диоде в цепи. Это довольно простой и доступный способ, позволяющий понизить напряжение, но его основной недостаток – расход мощности для каждого диода, что приведет к дополнительным затратам электроэнергии.

Как повысить силу тока в генераторе?

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.

Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?Какой нужен диод, чтобы понизить напряжение с 5в до 4.5в?

Про регуляторы

Конструктивно таблетки, контролирующие напряжение в генераторе, способны повышать ток до 13.6 вольт. Известно, что существует две схемы подключения регулятора: старая и новая.

Старая схема – это более надежный вариант, не слишком повышающий напряжение, но и не позволяющий ему опускаться до критичных значений. А вот новая – хотя она полностью скопирована со старой, имеет много недостатков.

Хронический недозаряд АКБ – это именно тот самый недостаток новой схемы. Проблематичным становится запуск двигателя в холодное время года. Владельцам приходится ставить предпусковые подогреватели или придумывать что-то еще.

Некачественные регуляторы заставляют АКБ поглощать энергию только летом, т.е, при плюсовой температуре. Зимой же, особенно если совершать короткие пробеги на авто, батарея не успевает прогреваться, хотя бы до 0, и периодически разряжается.

Опытные автомобилисты рекомендуют зимой проезжать не меньше 20-30 минут, чтобы восстановить АКБ.

Итак, как же решается проблема? Очевидно, что наилучший вариант – повысить напряжение в бортовой сети, а как это сделать? Необходимо заставить таблетку «поверить», что якобы в сети низкое напряжение. Тем самым, мы добьемся того, что ген будет выдавать недостающий вольтаж.

Низкое напряжение в бортовой сети автомобиля может быть вызвано наличием большого количества потребителей. Например, если используется мощная акустическая система с сабвуфером и усилителем, спады напряжения неизбежны.

Вместо диода использовать можно также специальные регуляторы, которые выдают три значения вольтажа, в зависимости от температуры воздуха: 13.2, 13.9 и 14.5 вольт. Получается три режима: летний, весна/осень и зима.

Рекомендуем к просмотру таблицу, где приведены данные о нормальном заряде АКБ и стандартной работе генератора.

Степень заряженности АКБ Заряжать АКБ зарядным устройством Работа генератора
12,72 вольт — 100% Если ЭДС– меньше 12,6 В норма – от 13,6 В — до 14,4 В
12,50 вольт — 75% Uнагрузки –меньше 9 В ( нагрузочная вилка) меньше 13,6 В – недозаряд(плохо)
12,35 вольт — 50% Плотность электролита– меньше 1,25г/см больше 14,4 В – перезаряд. (тоже плохо)
12,10 вольт — 25%

КАК СДЕЛАТЬ ИЗ 12 ВОЛЬТ 24

Недавно мы рассматривали устройство понижающее напряжение с 24 до 12 вольт, а теперь изучим повышающий преобразователь 12-24 В. Этот DC-DC преобразователь собран на основе специализированной микросхемы LM2585 производства Texas Instruments. Схема понадобилась для использования в авто (в частности для зарядки ноутбука на 20 В) и была выбрана за предельную простоту, требующую минимального числа внешних компонентов. Элемент переключения — транзистор, интегрирован внутрь регулятора, и способен выдерживать максимальный ток 3А и 60V напряжения. Частота переключения определяется параметрами внутреннего генератора и зафиксирована на 100 кГц. Дополнительные функции — схема плавного пуска, чтобы устранить скачки тока во время пуска и внутреннее ограничение тока. Поддержание точности выходного напряжения составляет 4% в зависимости от нагрузки.

Заключение

Совершенно другая конструкция — это стабилизатор напряжения понижающий, он делает несколько преобразований. Сначала напряжение сети преобразуется в постоянное с большой частотой (до 50 000 Гц). Оно стабилизируется и подается на импульсный трансформатор. Далее происходит обратное преобразование до рабочего напряжения (сетевого или меньшего по значению). Благодаря использованию электронных ключей (тиристоров) постоянное напряжение преобразуется в переменное с необходимой частотой (в сетях нашей страны — 50 Гц).

Согласно ПУЭ для питания переносного освещения должно применяться напряжение не выше 50 Вольт, а при работе в особо опасных и замкнутых пространствах – 12 Вольт (ПУЭ 6.1.16-18). При этом питание должно осуществляться через трансформаторы. Это нужно для того, чтобы исключить поражение электрическим током. Да и не всегда выходные параметры блоков питания или аккумуляторов позволяют подключить гаджеты или другую электронику. В связи со всем этим мы расскажем о том, как понизить напряжение постоянного и переменного тока до нужного вам значения.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: