Логическая защита шин

Диагностика цепей на обрыв при помощи обтекания током

Вернемся к дискретным цепям, в которых нельзя использовать метод избыточной информации. Это все входные цепи с единичными контактами, переключателями и кнопками со стороны плюса опер. тока

Если вы можете пропускать небольшой фиксированный ток через такую  цепь, то контроль на обрыв становится реальным. Правда создать такую цепь не просто, да и сама конструкция не вызывает у релейщиков доверия (см. рисунок ниже)

Логическая защита шин

Зная напряжение опер. тока и номинал шунтирующего контакт резистора R вы определяете ток контроля цепи. Резкое увеличение тока в цепи означает замыкание контакта (работа с соответствии с основным алгоритмом), а исчезновение тока контроля Ik — обрыв цепи.

Минусы данной схемы очевидны: нужен внутренний источник питания цепей и схема анализа тока в каждом дискретном входе терминала. Да и установка резисторов параллельно каждому внешнему НО-контакту довольно скучное занятие. Поэтому в реальности схему применяют нечасто, хотя устройства с внутренним источником питания дискретных входов на рынке есть.

Какие преимущества дает УРОВ?

Изначально УРОВ, в виде панели с электромеханическими реле, применялось на подстанциях и станциях с РУ 220 кВ и выше. Его применение обусловлено повышенными требованиями к надежности отключение короткого замыкания за наименьший промежуток времени.

Представьте, что на линии 220 кВ, в соответствии с принципом ближнего резервирования, установлены комплекты основной (ДФЗ) и резервных защит (ДЗ, ТЗНП, ТО), и все это бесполезно из-за механической неисправности привода выключателя. Сигнал на отключение защитами выдан, но ничего не происходит, и линия продолжает «гореть».

Остается надежда только на защиты дальнего резервирования, которые установлены на противоположных концах соседних линий.

По требованию дальнего резервирования эти защиты обязаны чувствовать КЗ на смежной лини и устранять их. Но во-первых, выдержки времени в этом случае могут быть достаточно большими (особенно, если ДЗ или ТЗНП начинают чувствовать КЗ только после отключения некоторых параллельных линий). А во-вторых, дальнее резервирование удается обеспечить не всегда. К тому же при действии защит дальнего резервирования происходит отключение множества выключателей на разных подстанциях, что затрудняет работу диспетчера при локализации аварии.

Логическая защита шин

В таких случая, требуется меры по усилению ближнего резервирования, т.е. установке устройства резервирования при отказе выключателя.

УРОВ принимает команду отключения выключателя от защит и если через время Туров отключения не происходит, то устройство дает команду на отключение смежных выключателей. Просто и надежно

При этом время отключения от УРОВ всегда определено как сумма времени действия собственной защиты присоединения плюс ступень селективности. К тому же УРОВ «использует» чувствительность своей защиты, которая выше, чем у защиты дальнего резервирования.

На напряжении 110 кВ и ниже УРОВ использовался реже из-за стоимости панели и отсутствия жестких требований к скорости отключения, как на сверхвысоком напряжении. Ведь панель УРОВ стоит денег и занимает место.

Однако, с развитием микропроцессорной техники функция УРОВ стала практически бесплатной. Распределенный алгоритм УРОВ стал использоваться в логике терминалов, а «снаружи» остались только шинки и ключи ввода/вывода. Сегодня УРОВ применяют на всех классах напряжения, начиная с 6 кВ.

Давайте рассмотрим, что дает УРОВ на стандартной подстанции по схеме «6-1» (одна секционированная система шин 6 кВ).

Логическая защита шин

1 случай (удаленное КЗ на линии 1)

При возникновении короткого замыкания на линии 1 в зоне действия МТЗ (конец линии), защита срабатывает с выдержкой времени 0,9 с. При отказе выключателя алгоритм УРОВ отключит вводной выключатели через время Тзащ. = Тмтз + Туров = 0,9 + 0,3= 1,2 с.

Если алгоритм УРОВ отсутствует, то МТЗ ввода отключит КЗ через 1,5 с (дальнее резервирование).

Таким образом, мы получаем выигрыш 0,3 с.

Также обратите внимание, что здесь для пуска алгоритма мы используем МТЗ линии, а не ввода, что дает значительно большую чувствительность. Особенно сильна эта разница будет для секций 6 кВ с двигателями. 2 случай (близкое КЗ на линии 1)

2 случай (близкое КЗ на линии 1)

При возникновении короткого замыкания на линии 1 в зоне действия отсечки (начало линии), защита срабатывает с выдержкой времени 0,1 с. При отказе выключателя алгоритм УРОВ отключит вводной выключатели через время Тзащ. = Тто + Туров = 0,1 + 0,3= 0,4 с.

По дальнему резервированию мы так же получим 1,5 с, т.е. теперь выигрыш уже 1,1 с.

Советуем изучить Профиль для светодиодной ленты

Очевидно, что и на 6 кВ применение УРОВ дает преимущество в быстродействии и чувствительности

При всех своих плюсах УРОВ — достаточно «опасная» функция и применять ее нужно обдуманно. Следует помнить, что при срабатывании УРОВ полностью отключает участок сети с блокировкой любой автоматики восстановления питания, такой как АПВ и АВР. Это означает невозможность быстрого восстановления нормального режима и массовый недоотпуск электроэнергии (особенно если нижестоящие потребители не имеют своих АВР).

В связи с этой особенностью при пуске УРОВ, помимо контроля тока через выключатель, применяют различные способы ограничения возможности излишнего действия.

О логике и схемах УРОВ мы поговорим в следующей статье

Популярные статьи  Фазометры и синхроноскопы

Релейная защита

Отличительными особенностями работы энергосистем являются:

  • Быстрота;
  • Взаимосвязанность;
  • Согласованность процедур производства, распределения и потребления электрической энергии.

Для управления всеми процессами в энергосистеме используются специальные средства автоматического управления. Все используемые устройства автоматики по своему предназначению и области применения подразделяются на два класса:

  1. Местная и системная технологическая автоматика;
  2. Местная и системная противоаварийная автоматика.

Предназначение системной технологической автоматики заключается в обеспечении нормальной работы аппаратуры, а именно:

  • Запуск блоков турбина-генератор и включение в работу синхронных генераторов;
  • Автоматическое регулирование напряжения и реактивной мощности на шинах электростанции;
  • Автоматическое регулирование частоты и обеспечение режима заданной нагрузки электростанции;
  • Оптимальное распределение электрической нагрузки между блоками;
  • Регулирование напряжения в распределительной сети;
  • Регулирование частоты и перетекания мощности.

Системная противоаварийная автоматика предназначена для предотвращения и наиболее эффективной ликвидации последствий аварий, а именно:

  • Защита электрического оборудования от короткого замыкания и нестандартных способов работы;
  • Самостоятельное включение после ликвидации неисправности;
  • Самостоятельное включение резервного оборудования;
  • Автоматическая разгрузка по частоте;
  • Автоматическое устранение асинхронного режима;
  • Самостоятельное предупреждение перебоев устойчивости.

Главную роль среди устройств аварийной аппаратуры занимает релейная защита, которая оценивает поведение электрической питающей системы и ее компонентов в режимах больших негативных влияний и резких скачков электрических характеристик.

Негативные реакции могут быть вызваны рядом факторов, а именно:

  • Пробоем или замыканием изолирующих элементов линий электропередач ввиду грозовых воздействий или при их загрязнении;
  • Разрывом проводов или грозозащитных заземлений из-за намерзания льда или больших колебаний;
  • Механической деформацией опор, повреждением изоляторов, схлестыванием проводов;
  • Некомпетентными действиями оперативного персонала;
  • Заводским браком оборудования.

Основными задачами релейной защиты являются:

  1. Самостоятельное обнаружение неисправного элемента с последующей его изоляцией. Защитная система сообщает сигнал на срабатывание выключателей этого компонента, создавая приемлемые условия работы для нетронутой части энергетической системы;
  2. Самостоятельное обнаружение необычного режима работы с использованием мер для его исправления. Отклонение от привычного режима первостепенно вызывается разными перегрузками, отключение которых не обязательно. Разгрузив оборудование, защита сообщает этот сигнал ошибки оперативному персоналу.

Из чего состоит ЛЗШ

Элементы логической защиты шин не сосредоточены в одном месте. Это система, объединяющая терминалы защит питающих и отходящих линий.

Логическая защита шин

Терминалы секционных выключателей получают сигнал блокировки ЛЗШ от присоединений обоих секций, которые они соединяют. Для этого используются разные дискретные входы.

Поведение ЛЗШ при внешнем КЗ

При внешнем коротком замыкании запускается МТЗ присоединения, на котором оно произошло. Естественно, отключение произойдет по истечении выдержки по времени, предусмотренной для данного тока замыкания.

Но, при наличии ЛЗШ, терминал выполнит еще одну задачу: выдаст сигнал ее блокировки.

Он поступит на терминалы фидеров, питающих секцию.

На этих терминалах, если произойдет срабатывание МТЗ, запустится ЛЗШ. Именно в них она настроена на отключение, на отходящих элементах оно не нужно, их задача – только передача сигнала о том, что КЗ находится в их зоне действия, и они готовы его ликвидировать.

В случае отказа МТЗ отходящей линии короткое замыкание будет устранено МТЗ питающего фидера или УРОВ. За отказ ЛЗШ не отвечает.

Работа ЛЗШ при КЗ на шинах

Если короткое замыкание произошло на шинах РУ, сигнала блокировки от отходящих линий не поступит, так как ток КЗ через них не проходит.

Запуск МТЗ питающих шины линий при отсутствии сигнала блокировки приведет к мгновенному действию ЛЗШ на отключение присоединений.

Причем отключатся независимо друг от друга все выключатели, через которые в данный момент осуществляется питание. Если помимо ввода включен секционный выключатель, то ЛЗШ сработает и на нем.

Защита носит название логической именно потому, что ее работа связано с анализом места КЗ в системе: если ни один терминал отходящей линии не видит замыкание, значит – оно на шинах.

Зона, охваченная защитой, ограничивается местами установки трансформаторов тока всех присоединений секции. В этом она похожа на дифференциальную защиту шин, реализованную классическим образом. При срабатывании ЛЗШ формируется сигнал запрета АВР на поврежденную секцию.

Надежность ЛЗШ

В отличие от других защит, ЛЗШ редко срабатывает при проверках РЗА персоналом электролабораторий.

При работе на отходящих присоединениях сигнал блокировки, хоть и поступает на входы терминалов линий питания, но вреда не приносит.

Возможен только отказ в работе при совпадении фактора наличия проверочного тока на отходящем фидере и реальном КЗ на шинах, но вероятность такого казуса невелика.

Этим ЛЗШ выгодно отличается от дифференциальных защит, работая в зоне действия которых можно ошибочно устроить масштабную техногенную аварию.

Отказы в работе ЛЗШ связаны, в основном, с короткими замыканиями на выводах трансформаторов тока. Дифференциальные защиты шин определяют КЗ на них с помощью реле, установленных в каждой фазе. Любое из реле, сработав, даст команду на отключение. В случае же с ЛЗШ наоборот: если через трансформатор тока любой из фаз отходящего фидера пойдет ток КЗ, сформируется сигнал блокировки.

Поэтому, если при КЗ в комплектной ячейке дуга перескочит за выводы трансформатора, произойдет отказ ЛЗШ. И замыкание будет устранено только с выдержкой времени МТЗ питающего фидера.

Оптический датчик электрической дуги

В современных системах ЗДЗ используются оптические датчики двух видов, различающиеся по способу установки .

В первом случае полупроводниковый фотодатчик

(фотодиод, фоторезистор, фототранзистор, фототиристор) устанавливается непосредственно в отсек КРУ. Недостаток такой конструкции заключается в том, что электронные компоненты и линии связи располагаются в рабочей зоне, а значит, подвержены воздействиям сильных электромагнитных помех.

Для устранения этих нежелательных воздействий существует другой способ реализации оптического датчика, при котором в отсек КРУ устанавливается некий пассивный элемент, осуществляющий захват оптического излучения, а вся оптоэлектронная часть выводится за пределы шкафа РУ (рис. 3). Передача сигнала от собирающего элемента к фотоприемнику происходит по оптическому волокну, которое не подвержено влиянию электромагнитных помех. Такие устройства получили название волоконно-оптических датчиков

Популярные статьи  Почему могут не срабатывать в «тесте» узо после 10 лет службы?

(ВОД). Захват оптического излучения выполняется при помощи устройства на основе линзы или же отрезка оптического волокна в прозрачной оболочке.

Фотодатчики и линзовые ВОД называют также точечными датчиками

, поскольку они регистрируют оптическое излучение в ограниченном телесном угле. ВОД на основе собирающего волокна реализуют захват излучения поверхностью волокна по всей его длине, поэтому называютсялинейными датчиками . Один линейный датчик может быть установлен сразу в нескольких отсеках или шкафах КРУ. Как точечный, так и линейный датчики имеют свои преимущества и недостатки (табл. 3).

Таблица 3. Сравнение точечного и линейного датчиков.

Сравниваемый параметр Линейный датчик Точечный датчик
Риск затенения нет есть
Чувствительность ниже, чем у точечного высокая
Возможность работы с несколькими отсеками есть нет
Точность определения места возникновения электрической дуги низкая высокая

Точечные фотодатчики нашли свое применение в ряде систем ЗДЗ, таких как ЗДЗ-01 (ИЦ «Бреслер»), «Фотон» (НПЦ «Мирономика»), БССДЗ-01 и БССДЗ-03 (ЗАО «Промэлектроника»). Большинство же отечественных и иностранных предприятий, разрабатывающих оптические системы ЗДЗ, используют точечные и линейные ВОД, в некоторых случаях сочетая оба подхода. Среди оптических систем ЗДЗ иностранного производства можно выделить следующие: REA (ABB, Германия), DEHNShort (Dehn, Германия), ARCON (Eaton, Ирландия), PGR-8800 (Littelfuse, США), VAMP (Schneider Electric, Франция). В России ассортимент оптических ЗДЗ представлен следующими устройствами: «ОВОД» (ООО НПП «ПРОЭЛ»), ФВИП-С (ФГУП ВНИИА им. Н. Л. Духова), «Орион-ДЗ» (ЗАО «РАДИУС Автоматика»), ДУГА-МТ (ООО «НТЦ «Механотроника»), «ЭТЮД» (ООО «МПП «Энерготехника»), РС40-АРК, ПД-01, ПД-02 (ООО «РЗА СИСТЕМЗ»), УДЗ 00 «Радуга-ПС» (ООО «ТЕРМА-ЭНЕРГО») и др.

При разработке ВОД необходимо учитывать несколько моментов.

  • Выбор типа ВОД . Как точечный, так и линейный датчик имеют свои преимущества и недостатки и могут быть использованы в системах дуговой защиты. Зачастую целесообразно использование обоих типов датчиков.
  • Выбор собирающего элемента . Линзовый ВОД должен захватывать излучение в достаточно широком телесном угле. Эффективность линейного ВОД во многом определяется свойствами собирающего волокна. Обычно используется волокно с большим диаметром сердцевины, например пластиковое (POF) или HCS-волокно.
  • Расположение собирающих элементов . Необходимо обеспечить контроль всех частей КРУ, в которых возможно возникновение дугового КЗ.
  • Выбор фотоприемника . Спектральная характеристика используемого фотоприемника должна перекрывать спектр излучения вспышки. Фотоприемник также должен иметь достаточную пороговую чувствительность.
  • Диагностика работоспособности . Постоянная проверка работоспособности позволяет вовремя обнаружить неработающие датчики. Это можно сделать при помощи тестового сигнала, периодически посылаемого к фотоприемнику от передатчика, специально устанавливаемого в датчик для этой цели .
  • Настройка пороговых значений . Устройство должно уметь отличать сигнал, вызываемый электрической дугой, от тестового сигнала и излучения других источников света.
  • Быстродействие . Время срабатывания ЗДЗ складывается из времени срабатывания устройств обнаружения (МТЗ и оптического датчика) и времени срабатывания выключателя. Важную роль играет собственное время срабатывания оптического датчика.

3-1. Токовая отсечка и максимальная токовая защита одиночных линий 35 и 110 кВ

Основные условия расчета. Основные условия расчета максимальных токовых защити токовых отсечек, изложенные в Главе 1, справедливы и для линий 35 и 110 кВ без ответвлений и с ответвлениями. В выражении (1-1), коэффициент самозапуска kсзп определяется по суммарному току самозапуска нагрузки всех трансформаторов, подключенных к защищаемой линии и ко всем следующим (по направлению тока) линиям того же напряжения. Для этого в расчетной схеме все нагрузки, подключаемые к каждому трансформатору, представляются сопротивлениями обобщенной или бытовой нагрузки, приведенными к рабочей максимальной мощности трансформатора. Высоковольтные двигатели учитываются отдельно.

1.1 Назначение релейной защиты и автоматики

Категория: В.Н. Копьев «Релейная защита. Принципы выполнения и приенения»

Энергетическая система представляет собой сложную многозвенную техническую систему, предназначенную для производства, распределения и потребления электроэнергии. Процессы, происходящие в энергосистеме, отличаются быстротой, взаимосвязанностью, единством процессов производства, распределения и потребления электроэнергии. Управление ими без применения специальных технических средств, называемых средствами автоматического управления, в большинстве случаев оказывается невозможным.

Условно, все устройства автоматики по своему назначению и области применения можно разделить на следующие две большие группы: местную и системную технологическую автоматику, местную и системную противоаварийную автоматику.

Технологическая автоматика обеспечивает автоматическое управление в нормальном режиме:

  • пуск блоков турбина-генератор и включение на параллельную работу синхронных генераторов;

  • автоматическое регулирование напряжения и реактивной мощности на шинах электростанции;

  • автоматическое регулирование частоты и обеспечения режима заданной нагрузки электростанции;

  • оптимальное распределение электрической нагрузки между блоками;

  • регулирование напряжения в распределительной сети;

  • регулирование частоты и перетоков мощности и т.п.

Назначением противоаварийной автоматики является предотвращение или наиболее эффективная ликвидация последствий аварий:

  • релейная защита электрооборудования от коротких замыканий и ненормальных режимов;

  • автоматическое повторное включение;

  • автоматическое включение резерва;

  • автоматическая частотная разгрузка;

  • автоматическая ликвидация асинхронного режима.

  • автоматика предотвращения нарушения устойчивости и т.д.

Из перечисленных видов устройств автоматики особо выделяется релейная защита, изучающая поведение электроэнергетической системы и ее элементов в режимах глубоких возмущающих воздействий и скачкообразных изменений электрических параметров. Эти возмущения вызываются различного рода короткими замыканиями, которых могут возникнуть по причинам:

  • пробоя или перекрытия изоляторов линий электропередач в случае грозовых перенапряжений или при их загрязнении;

  • обрыва проводов или грозозащитных тросов из-за обледенения и вибраций;

  • механических повреждений опор, поломке изоляторов разъединителей, схлестывании проводов;

  • ошибочного действия оперативного персонала;

  • заводских дефектов оборудования и ряда других факторов.

Популярные статьи  Какой провод идет на заземление в розетке

Управление энергосистемой при нарушении ее нормальных режимов тесно связано с работой релейной защиты. Поэтому изложения материала целесообразно начать с рассмотрения этого вида автоматики. Требование безаварийности и надежности энергоснабжения закладывается уже на стадии проектирования энергосистемы за счет оптимального выбора источника электроэнергии (уголь, газ, вода или другое), расположения электростанций, передачи мощности, учета характеристик нагрузок и перспектив их роста, способов регулирования напряжения и частоты, планированием режимов работы и т.п. И все же полностью исключить факт отказа оборудования из-за коротких замыканий нельзя.

На релейную защиту возлагаются следующие функции:

1.Автоматическое выявление поврежденного элемента с последующей его локализацией. Защита подает команду на отключение выключателей этого элемента, восстанавливая нормальные условия работы для неповрежденной части энергосистемы.

2.Автоматическое выявление ненормального режима с принятием мер для его устранения. Нарушения нормального режима в первую очередь вызываются различного рода перегрузками, которые не требуют немедленного отключения. Поэтому защита действует на разгрузку оборудования или выдает сообщение дежурному персоналу.

В качестве примера на Рис.1 представлено современное микропроцессорное реле, выпускаемое инженерно-производственной фирмой «РеонТехно», на Рис.2 — типовая панель защиты линии, выполненная на электромеханических реле на Рис.3 — многофункциональное устройство РЗА НТЦ «Механотроника».

Рис. 1. Микропроцессорные реле тока типа РСТ 80АВ, выпускаемое ИПФ «Реон-Техно»

Рис. 2. Типовая панель защиты линии, выполненная на электромеханических реле

Рис. 3. Многофункциональное цифровое устройство релейной защиты и автоматики НПЦ «Механотроника»

Дифференциальная защита трансформаторовРЗЛ-05.T2, РЗЛ-05.T3

Широкий спектр функцийзащиты и автоматики

Цифровой осцилографЖурнал событий

Интеграция вSCADA-системы

Температура эксплуатации-40°C. +55°C

Возможность программированиялогики (под заказ)

Назначение

Микропроцессорные устройства релейной защиты и автоматики серии РЗЛ-05.Т предназначены для выполнения функций основной защиты двухобмоточного (РЗЛ-05.Т2) или трехобмоточного (либо двухобмоточного с расщепленной обмоткой) (РЗЛ-05.Т3) трансформатора или автотрансформатора с высшим напряжением 35-110 кВ.

Устройства предназначены для установки в релейных отсеках КСО, КРУ, КРУН, а также на панелях, в шкафах управления электрических станций и подстанций 35-110 кВ.

Функции

  • Две ступени продольной дифзащиты − дифференциальная токовая отсечка (ДТО) и чувствительная дифференциальная токовая защита (ДТЗ) с торможением от сквозного тока и отстройкой от бросков тока намагничивания (с блокировкой по второй, третьей и пятой гармонике при броске намагничивающего тока). ДТО работает без каких-либо блокировок и не имеет торможения. Для ступени ДТЗ торможение выполняется от всех фазных токовых каналов.
  • Контроль исправности токовых цепей (КТЦ). Для своевременного выявления неисправности токовых цепей дифференциальной защиты, например, вследствие нарушения изоляции или неправильного соединения токовых цепей предусмотрена сигнализация небаланса в плечах дифференциальной защиты.
  • 5 ступеней максимальной токовой защиты, в т.ч. токовая отсечка (ТО) и защита от перегрузки трансформатора (ЗОП) с независимой и зависимой времятоковой характеристикой, с блокировкой от броска намагничивающего тока, с выбором срабатывания по направлению мощности. Есть возможность реализовать для ступеней МТЗ комбинированный пуск по току и минимальному напряжению (вольтметровая блокировка).
  • Логическая защита шин (ЛЗШ) для быстрого отключения выключателя ВВ НН при возникновении повреждения на шинах.
  • 3 ступени защиты от замыканий на землю в цепях ВН трансформатора по измеренному и расчётному току нулевой последовательности 3I0 стороны ВН.
  • Защита от неполнофазного режима (ЗОФ) по току обратной последовательности.
  • Внешняя (газовая) защита трансформатора. Срабатывания газовой защиты трансформатора происходит по сигналам от назначенных дискретных входов и действуют на реле отключения или сигнализацию.
  • Дуговая защита (ДгЗ) с ВОД-датчиками с возможностью контроля тока.
  • Резервирование отказов выключателя (УРОВ).
  • Свободно-программируемая логика (СПЛ), позволяющая свободно запрограммировать все дискретные входы, выходы и светодиоды устройства.
  • Энергонезависимый журнал событий (256 событий).
  • Аварийный осциллограф. При срабатывании защиты устройство производит запись мгновенных значений входных аналоговых (по выбору пользователя) и дискретных сигналов (входных, выходных, признаков работы защит).
  • Контроль температуры внутри устройства.
  • Контроль состояния дискретных входов устройства.

Тормозная характеристика дифференциальной защиты

Характеристика срабатывания (тормозная характеристика) определяет соотношение дифференциального (Idiff) и тормозного (Irest) токов. Ломанная линия А-В-С-Д делит плоскость на две части – область срабатывания и несрабатывания. Все, что лежит выше ломанной, является областью срабатывания.

Участок А – характеристика срабатывания представляет собой порог чувствительности дифференциальной защиты, учитывающий токовые помехи, такие как токи намагничивания. При значениях дифференциального тока ниже этой величины дифференциальная защита не срабатывает. Участок В – учитывает погрешности, пропорциональные току, которые могут появляться из-за погрешностей первичных трансформаторов тока или входных трансформаторов устройства, либо погрешностей переключателя положений в трансформаторах с регулированием под нагрузкой (РПН). Время срабатывания ДЗТ при кратности дифференциального тока к уставке 1,2 составляет не более 45 мс. Участок С – диапазон больших токов, которые могут приводить к возрастанию насыщения трансформаторов тока. Участок D – область работы без торможения при больших уровнях тока в защищаемой зоне, где величина дифференциальных токов исключает возможность внешнего повреждения. Время срабатывания ДТО составляет: при кратности дифференциального тока к уставке 1,2 . 40 мс; при кратности дифференциального тока к уставке более 2,0 . 30-35 мс.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: