Магнитные цепи электрических аппаратов

Магнитодвижущая сила (MMF)

Подобно тому, как электродвижущая сила (ЭДС) управляет током электрического заряда в электрических цепях, магнитодвижущая сила (MMF) «управляет» магнитным потоком через магнитные цепи. Термин «магнитодвижущая сила», однако, неверен, поскольку это не сила и не что-либо движущееся. Возможно, лучше называть это просто MMF. По аналогии с определением ЭДС, магнитодвижущая сила F{ Displaystyle { mathcal {F}}} вокруг замкнутого цикла определяется как:

F=∮ЧАС⋅dл.{ displaystyle { mathcal {F}} = oint mathbf {H} cdot mathrm {d} mathbf {l}.}

MMF представляет собой потенциал, который гипотетический магнитный заряд выиграет, завершив цикл. Управляемый магнитный поток равен нет ток магнитного заряда; он просто имеет такое же отношение к MMF, как электрический ток к EMF. (См. Подробное описание микроскопических источников сопротивления ниже.)

Единицей магнитодвижущей силы является ампер-виток (At), представленный устойчивым прямым электрический ток одного ампер протекающий в одновитковой петле электропроводящего материала в вакуум. Гилберт (Gb), установленный IEC в 1930 г. это CGS единица магнитодвижущей силы и является единицей немного меньшей, чем ампер-виток. Апартамент назван в честь Уильям Гилберт (1544–1603) английский врач и натурфилософ.

1Гб=104πВ≈0.795775В{ displaystyle { begin {align} 1 ; { text {Gb}} & = { frac {10} {4 pi}} ; { text {At}} & приблизительно 0,795775 ; { text {At}} end {align}}}

Магнитодвижущую силу часто можно быстро рассчитать, используя Закон Ампера. Например, магнитодвижущая сила F{ Displaystyle { mathcal {F}}} длинной катушки составляет:

F=Nя{ displaystyle { mathcal {F}} = NI}

куда N это количество повороты и я это ток в катушке. На практике это уравнение используется для MMF реальных индукторы с N будучи номер намотки индукционной катушки.

Как устроены плоскошлифовальные станки

Подавляющее большинство деталей, изготовленных из металла, подвергается такой технологической операции, как шлифовка. Для ее выполнения с высокой эффективностью и точностью и применяются станки плоскошлифовальной группы.

Довольно сложный в изготовлении ленточный станок с отличным функционалом

На плоскошлифовальных станках серийных моделей можно обрабатывать как плоские, так и профильные детали. Точность обработки поверхности, которой удается добиться при использовании таких устройств, составляет 0,16 микрон. Конечно, достичь такого результата при обработке на станках, изготовленных своими руками, практически невозможно. Однако даже той точности, которую позволяют получать самодельные станки, вполне достаточно для многих металлических изделий.

Несущим конструктивным элементом станков данной группы (как и любого другого оборудования) является станина. От ее габаритов напрямую зависит, какого размера детали можно обрабатывать на станке

Наиболее распространенным материалом изготовления станин плоскошлифовального оборудования является чугун, так как данный металл за счет своих характеристик отлично гасит вибрации, что особенно важно для устройств подобного назначения

Рабочий стол и органы управления шлифовального станка 3Г71М

Конструктивным элементом плоскошлифовальных станков, на котором фиксируется обрабатываемая заготовка, является рабочий стол, имеющий круглую или прямоугольную форму. Его размеры в зависимости от конкретной модели плоскошлифовального оборудования могут серьезно варьироваться. Обрабатываемые детали на таком рабочем столе могут фиксироваться за счет его намагниченной поверхности либо при помощи специальных зажимных элементов. В процессе обработки рабочий стол совершает возвратно-поступательные и круговые движения.

В плоскошлифовальных станках, выпускаемых серийно, рабочие столы приводятся в движение при помощи гидравлической системы. В оборудовании, собранном своими руками, для этого используют механические передачи.

Шлифовка стальной заготовки, фиксируемой на рабочей поверхности станка с помощью магнитного поля

Важными элементами конструкции плоскошлифовального оборудования, за счет которых обеспечиваются точность и плавность перемещения рабочего стола, являются направляющие. Кроме высокой точности изготовления, направляющие должны обладать исключительной прочностью, так как в процессе практически постоянных перемещений рабочего стола они подвергаются активному износу.

Для достижения высокой точности обработки направляющие должны обеспечить точное, плавное (без рывков) перемещение рабочего стола с минимальным трением соприкасающихся элементов. Именно поэтому для изготовления данных конструктивных элементов используется высокопрочная сталь, которую после изготовления из нее направляющих подвергают закалке.

Вариант изготовления направляющих с использованием уголков и подшипников

Рабочий инструмент плоскошлифовального станка, в качестве которого может использоваться шлифовальный круг или абразивная лента, устанавливается на шпинделе бабки. Вращение рабочему инструменту, за которое отвечает главный электрический двигатель, может передаваться посредством редуктора или ременной передачи.

Для плоскошлифовальных станков, которые делаются своими руками, можно выбрать более простой вариант: подобрать диаметр шлифовального круга таким образом, чтобы его можно было закрепить непосредственно на валу электродвигателя. Это исключит необходимость использования редукторной или ременной передачи.

Шкафы и блоки, применяемые для управления электродвигателями

Управление электродвигателем может осуществляться с помощью различных устройств: шкафов, щитов, пускателей, блоков и так далее.

Шкафы управления служат для обеспечения ручного и автоматического управления различными исполнительными устройствами. Они состоят из силовых коммутационных аппаратов, устройств защиты, преобразователя частоты. С помощью электрического шкафа можно осуществлять управление электродвигателем в соответствии с поставленной задачей.

Шкаф управления электродвигателями обеспечивает непрерывный контроль изменений параметров системы для обеспечения оптимального режима работы устройства.

Популярные статьи  Какой кабель и автомат выбрать для подключения электрического котла на 9 квт?

Ящики (шкафы) управления серии Я5000 (рис. 1) обеспечивают управление (местное, дистанционное и автоматическое) электродвигателями асинхронными (мощностью до 75 кВт). При этом поддерживаются различные режимы работы (продолжительный, кратковременный, повторно-кратковременный). Шкафы данного типа могут различаться по ряду технических характеристик, в том числе:

  • наличию реверса у двигателя;
  • числу управляемых двигателей;
  • наличию переключателя на автоматический режим;
  • способу питания цепи управления.

Корпус ящика управления Я5000 выполнен в виде сварной конструкции. Дверь, фиксируемая замком и укрепленная на петлях, обеспечивает надежную степень защиты (IP 31, IP 54). Аппаратура размещена частично на внутренней стороне двери и монтажной панели.

К основным преимуществам данного оборудования можно отнести:

  • усовершенствованную конструкцию корпуса, обеспечивающую рациональное использование рабочего объема;
  • высокую технологичность и простоту сборки;
  • высокую степень электробезопасности.

Пусковая аппаратура для управления электродвигателем — неотъемлемая часть электропривода. Данная аппаратура предназначена для запуска, регулирования скорости, торможения, реверсирования и остановки электродвигателей. Правильная эксплуатация электропривода возможна только при использовании соответствующей электрической аппаратуры.

В настоящее время существует немало различных способов пуска электродвигателей. Это обусловлено тем, что современным энергоэффективным двигателям, отличающимся более высокими пусковыми токами, необходимо обеспечить плавный пуск.

Аппаратура прямого пуска осуществляет пуск, защиту от перегрузок и отключение электродвигателей. Данный способ используется в случае стабильного питания двигателя, который жестко связан с приводом, например, насоса.

Пусковая система «звезда–треугольник» служит для понижения пускового тока. Необходимость переключения со «звезды» на «треугольник» существует для мощных трехфазных асинхронных двигателей мощностью от 30–50 кВт и высокооборотных (около 3000 об/мин). На обмотку двигателя, соединенного в «звезду», подается 220 В, затем, после полного набора оборотов, двигатель переключается на «треугольник» и подается 380 В.

Подключение двигателя зависит от расположения перемычек на клеммной колодке (рис. 2). Автоматическое переключение осуществляется путем использования контактов магнитных пускателей (рис. 3).

Для изменения направления вращения асинхронного двигателя нужно поменять местами две фазы. Эту замену можно осуществить с помощью магнитного пускателя реверсивного типа (рис. 4).

Таким образом, ящик управления электродвигателем выполняет ряд важных функций. Он может быть использован для управления как обычными, так и реверсивными двигателями. Они пригодны к эксплуатации в условиях, когда имеется повышенная влажность и запыленность, в широком диапазоне температур окружающего воздуха (от –40 °С до +45 °С).

Сила тока по закону Ома

Альтернативные утверждения закона Ома заключаются в том, что I в проводнике равен разности потенциалов V на проводнике, деленной на сопротивление проводника, или просто I = V / R, и что разность потенциалов на проводнике равна произведению тока в проводнике и его сопротивления, V = IR.

В цепи, в которой разность потенциалов или напряжение постоянны, I может быть уменьшен, путем добавления большего сопротивления или увеличен путем удаления некоторого сопротивления. Закон Ома также может быть выражен в терминах электродвижущая сила, или напряжение, E — источника электрической энергии, такой как батарея, например, I = Е / R.

С изменениями закон Ома также применяется к цепям переменного тока, в которых соотношение между напряжением и током более сложное, чем для постоянных I. Именно потому, что I меняется, возникают другие формы замыкания тока, называемые реактивным сопротивлением. Сочетание сопротивления и реактивного сопротивления называется импеданс, Z. Когда импеданс, эквивалентный отношению напряжения к току, в цепи переменного тока является постоянным, обычное явление, применим закон Ома, например, V/I = Z.

Закон Ома используется во всех отраслях электротехники для расчета значения резисторов, требуемых в цепях, и также может использоваться для определения тока, протекающего в цепи, где напряжение можно легко измерить через известный резистор. Таким образом, он применяется в огромном количестве вычислений во всех формах электрических и электронных схем — фактически везде, где течет ток.

Схемотехнические модели

Наиболее распространенный способ представления магнитной цепи — это модель сопротивления-сопротивления, которая проводит аналогию между электрическими и магнитными цепями. Эта модель хороша для систем, содержащих только магнитные компоненты, но для моделирования системы, содержащей как электрические, так и магнитные части, она имеет серьезные недостатки. Он не моделирует должным образом мощность и поток энергии между электрическими и магнитными доменами. Это связано с тем, что электрическое сопротивление рассеивает энергию, а магнитное сопротивление сохраняет ее и возвращает позже. Альтернативной моделью, которая правильно моделирует поток энергии, является гираторно-конденсаторная модель.

Классификация электрических аппаратов

В большинстве своём работа электрических аппаратных устройств не ограничивается выполнением какой-то одной конкретной функции, а, напротив, связана с реализацией целого набора действий. В связи с этим возникает определенная трудность в разделении таких устройств на конкретные виды и группы.

Для того чтобы провести классификацию электрических аппаратов, важно выделить главные функциональные особенности конкретных типов электрического оборудования:

  1. Коммутационные устройства. Такое оборудование служит для размыкания и замыкания цепей электрического тока. К таким устройствам относятся различные рубильники, выключатели, разъединители.
  2. Устройства защиты. Аппараты предохраняют проводящие элементы электрических цепей от перепадов напряжения, повышенной нагрузки сети и замыканий. Представленные функции защиты могут быть реализованы в различных видах предохранителей и реле.
  3. Аппараты, регулирующие запуск электрических машин. Устройства подобного рода предназначены для обеспечения плавного пуска и остановки промышленных потребителей электрического тока. Аппараты регулируют скорость вращения якоря двигателя. К подобным устройствам можно отнести пускатели, реостаты, контакторы.
  4. Ограничивающие аппараты. Подобные устройства называют реакторами и разрядниками, они обладают функцией ограничения токов короткого замыкания и перенапряжения.
  5. Аппараты, обеспечивающие контроль различных параметров электрических цепей. Самые распространенные виды таких устройств – датчики и реле.
  6. Аппараты, позволяющие проводить корректировку и изменение различных параметров электрического оборудования. К таким аппаратам относятся регуляторы и стабилизаторы.
  7. Измерительные аппараты. Функция данного оборудования сводится к тому, чтобы обеспечить изоляцию линии первичной коммутации от цепей измерительных приборов и приборов защиты.
  8. Устройства для проведения работ механического характера. Основным элементом таких устройств является электромагнит, призванный выполнять конкретные функции: подъемный электромагнит, электромагнитный тормоз.
Популярные статьи  Чем закрепить кабель на стене без сверления

Каждое электрическое устройство имеет в своем составе три основных элемента:

  • воспринимающий;
  • преобразующий;
  • исполнительный элемент.

Если исходить из принципа действия воспринимающего элемента устройства, то электрические аппараты подразделяются на электромагнитные, индукционные, полупроводниковые, магнитные.

В зависимости от принципа действия исполнительного элемента, электрические устройства подразделяются на контактные и бесконтактные аппараты.

Существует еще ряд принципиальных различий, связанных с особенностями эксплуатации рассматриваемого оборудования, которые позволяют провести разделение электрических устройств на определенные группы. Электрические аппараты могут быть рассчитаны на высокое или низкое напряжение. По продолжительности работы, такие устройства могут работать в режиме кратковременной или продолжительной эксплуатации.

Если принимать во внимание принцип управления, то можно выделить два основных вида устройств: с автоматическим и ручным управлением

Коммутационные электрические аппараты

Коммутационные электрические аппараты получили широкое распространение в различных отраслях промышленности. Трудно себе представить, как бы выполнялись различные задачи по эксплуатации и выполнению операций, связанных с электрическим оборудованием, без этого функционального устройства.

Коммутационный электрический аппарат служит для разъединения и замыкания электрической цепи при помощи контактной группы. Проще говоря, такое устройство можно назвать выключателем.

К основным видам представленного устройства относятся: рубильники, выключатели, контакторы, реле. Несмотря на то, что в этих приборах заложен практически один и тот же принцип работы, все они имеют ряд отличий друг от друга.

Рассмотрим каждый вид аппаратов в отдельности.

Рубильник относится к наиболее простому коммутационному аппарату. Аппарат приводится в действие вручную с помощью рукоятки. Такой вид устройств рассчитан на большие значения силы тока.

Выключатели имеют разные модификации. В промышленном применении, к наиболее распространенным видам таких устройств относятся масляные выключатели. Такие выключатели рассчитаны на напряжение до 220кВ.

Масло, в данном случае, служит для подавления/гашения, проходящей через него дуги электрического тока. Особого внимания заслуживают воздушные и электрогазовые выключатели.

Гашение дуги, то есть прекращение подачи электрического тока, происходит за счет подачи струи сжатого воздуха или электроотрицательного газа.

Кардинально новый способ размыкания токопроводящей линии воплощен в электромагнитных выключателях.

Принцип действия такого устройства заключается в следующем: электрическая дуга горит в нормальных условиях при атмосферном давлении – цепь включена.

Как только потребуется разомкнуть цепь, по направлению к дуге подается сильное магнитное поле. За счет воздействия магнитного поля, дуга начинает растягиваться и, в конечном итоге, расщепляется, размыкая тем самым токопроводящую линию.

Реле предназначено для размыкания и замыкания электрической цепи. Основным характерным свойством данного коммутационного аппарата является принципиально новый способ работы контактной пары.

Электромагнитное реле, как и в контакторе, под воздействием электрического тока, приводит в движение сердечник электромагнита с установленными на нем контактами, что приводит к замыканию цепи. Способ воздействия на контактную пару реле может быть не только электрическим, но также тепловым или акустическим.

Контакторы представляют собой разновидность электромагнитного реле. Основное назначение – включение и выключение токопроводящей линии силовых электрических цепей.

Контакторы могут применяться как в цепи переменного, так и постоянного электрического тока. Принцип работы контактора основан на электромагнитном эффекте.

Сердечник электромагнита контактора под действием электрического тока увлекает за собой подвижный контакт, который, вследствие такого перемещения, прижимается к неподвижному контакту и цепь замыкается.

Как только подача тока прекращается, сердечник возвращается в свое первоначальное положение и контакты размыкаются.

Применение магнитных цепей

Магнитные цепи находят очень большое поле применения, а именно, они используются для надежного пропускания магнитного потока по специальному проводнику с минимальными или, в некоторых случаях, определенными потерями. В электротехнической промышленности широко используется взаимная зависимость магнитной и электрической энергий, переход из одного состояния в другое. На подобном принципе работают, например, трансформаторы, разные электродвигатели, генераторы и другие устройства.

Конечно, можно продолжительное время говорить об устройствах, разных типах магнитопроводов (про которые речь пойдет далее), но наша первичная цель — рассмотреть выводы основных характеристик магнитных цепей. Продолжаем!

Сопротивление магнитной цепи

Сопротивление однородной магнитной цепи

Для однородной магнитной цепи, то есть состоящей из одного материала и однородного сечения, существует соотношение, позволяющее рассчитать ее магнитное сопротивление в зависимости от материала, из которого она состоит, и ее размеров:

рзнак равно1μ⋅лS{\ displaystyle {\ mathcal {R}} = {\ frac {1} {\ mu}} \ cdot {\ frac {l} {S}} \,}в H −1
  • μ{\ displaystyle \ mu \,}являюсь магнитной проницаемостью в кг М А -2  с -2 ,
  • л{\ displaystyle l \,}длина в метрах ,
  • S{\ Displaystyle S \,}участок в м 2 .
Популярные статьи  Датчики холла: принцип работы, типы, применение, как проверить

Эквивалентное сопротивление воздушного зазора

Нежелание тонкого воздушного зазора определяется

рзнак равноеμ⋅S{\ displaystyle {\ mathcal {R}} = {\ frac {e} {\ mu _ {0} \ cdot S}} \,} , с участием:
  • е{\ Displaystyle е \,} толщина воздушного зазора,
  • μ{\ displaystyle \ mu _ {0} \,} проницаемость для вакуума
  • S{\ Displaystyle S \,} секция воздушного зазора

Если толщина воздушного зазора велика, уже невозможно считать, что силовые линии магнитного поля остаются перпендикулярными воздушному зазору. Затем мы должны учитывать расширение магнитного поля, то есть учитывать, что сечение S больше, чем сечение металлических частей по обе стороны от воздушного зазора.

Сопротивление гетерогенной цепи

Законы ассоциации магнитных сопротивлений позволяют рассчитать магнитную цепь сложной формы или составленную из материалов с различными магнитными характеристиками. Эта схема разбита на однородную секцию, то есть на одну и ту же секцию и сделана из того же материала.

Последовательное объединение: когда две однородные секции имеют соответственно сопротивление и следуют друг за другом, сопротивление целого равнор1{\ displaystyle {\ mathcal {R}} _ {1}}р2{\ displaystyle {\ mathcal {R}} _ {2}}реq.sеряезнак равнор1+р2{\ Displaystyle {\ mathcal {R}} _ {eq.serie} = {\ mathcal {R}} _ {1} + {\ mathcal {R}} _ {2}}

Параллельное объединение: когда две однородные секции, имеющие соответственно для сопротивления и помещаются рядом, сопротивление целого таково, что , либо снова .р1{\ displaystyle {\ mathcal {R}} _ {1}}р2{\ displaystyle {\ mathcal {R}} _ {2}}реq.//{\ Displaystyle {\ mathcal {R}} _ {уравнение //}}1реq.//знак равно1р1+1р2{\ displaystyle {\ frac {1} {{\ mathcal {R}} _ {eq.//********************** {1} { {\ mathcal {R}} _ {1}}} + {\ frac {1} {{\ mathcal {R}} _ {2}}}}реq.//знак равнор1.р2р1+р2{\ displaystyle {\ mathcal {R}} _ {уравнение//********************** {{\ mathcal {R}} _ {1} . {\ mathcal {R}} _ {2}} {{\ mathcal {R}} _ {1} + {\ mathcal {R}} _ {2}}}}

Используя эти законы, мы можем рассчитать сопротивление всей сложной магнитной цепи.

Расчет магнитных цепей

Теперь внимание. Мы можем провести прямую аналогию и рассматривать магнитный поток в цепи, как характеристику электрической цепи — силу тока

Рассмотренное второе следствие означает, что для магнитной цепи, также как и для электрической, справедливо первое правило Кирхгофа. Отсюда можно лаконично перейти к закону полного тока, который в рамках классического магнетизма будет выглядеть следующим образом (приготовьтесь, немного математики):

Также мы помним, что напряженность магнитного поля связана с магнитным потоком следующим образом:

Руководствуясь приведенным законом полного тока и определением напряженности через магнитный поток, мы можем переписать закон полного тока относительно магнитного потока.

Откуда в уравнении появился и что символизирует аргумент l? Все просто. Так как мы рассматриваем контур L, то логично предположить, что на разных его участках наши показатели могут принимать разные значения: площадь сечения может изменяться, как и магнитная проницаемость или магнитный поток.

Полученное уравнение можно рассматривать как второй закон Кирхгофа, который, напомню, звучит следующим образом:

Для полной ясности, проведем аналогию между электрическими и магнитными цепями, а также их величинами.

Именно проведя аналогичное представление для электрической цепи, мы можем рассчитывать магнитные цепи. Для того, чтобы это сделать, следует:

  • Мысленно разбить сердечник на отдельные однородные участки (непрерывные, с постоянным сечением) без разветвлений и определить их магнитные сопротивления;

  • Построить эквивалентную электрическую цепь, последовательно заменяя участки магнитной цепи участками электрической с электрическими сопротивлениями, а также заменяя индуктивности (катушки) на источники ЭДС;

  • После обозначения заданных сопротивлений и ЭДС, можем вычислить в общем токи в элементах электрической цепи;

  • Произвести замену полученных величин согласно таблице (токи в потоки, ЭДС в МДС [Магнитодвижущую силу / Ампер-витки], а электрическое сопротивление в магнитное сопротивление).

Именно таким образом, мы можем рассчитать характеристики магнитной цепи. Полученные результаты позволяют, например, вычислить индуктивности.

Вывод

Внутреннее сопротивление бывает не только у различных химических источников напряжения. Внутренним сопротивлением также обладают и различные измерительные приборы. Это в основном вольтметры и осциллографы.

Дело все в том, что если подключить нагрузку R, сопротивление у которой будет меньше или даже равно r, то у нас очень сильно просядет напряжение. Это можно увидеть, если замкнуть клеммы аккумулятора толстым медным проводом и замерять в это время напряжение на клеммах. Но я не рекомендую этого делать ни в коем случае! Поэтому, чем высокоомнее нагрузка (ну то есть чем выше сопротивление нагрузки R ), тем меньшее влияние оказывает эта нагрузка на источник электрической энергии.

Вольтметр и осциллограф при замере напряжения тоже чуть-чуть просаживают напряжение замеряемого источника напряжения, потому как являются нагрузкой с большим сопротивлением. Именно поэтому самый точный вольтметр и осциллограф имеют ну очень большое сопротивление между своими щупами.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: