Расчет трансформатора

Содержание

Типовой расчёт параметров

Довольно часто радиолюбители используют при расчёте трансформатора упрощённую методику. Она позволяет выполнить расчёт в домашних условиях без использования величин, которые трудно узнать. Но проще использовать готовый для расчёта трансформатора онлайн-калькулятор. Для того чтобы воспользоваться таким калькулятором, понадобится знать некоторые данные, а именно:

  • напряжение первичной и вторичной обмотки;
  • габаритны сердечника;
  • толщину пластины.

Стержневой тип магнитопровода

В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:

После того как первый этап выполнен, приступают к следующей стадии расчёта. Число витков в первичной обмотке находится по формуле: K1 = 50*U1/S. А число витков вторичной обмотке определяется выражением K2= 55* U2/S, где:

  • U1 — напряжение первичной обмотке, В.
  • S — площадь сердечника, см².
  • K1, K2 — число витков в обмотках, шт.

Расчет трансформатора

Остаётся вычислить диаметр наматываемой проволоки. Он равен D = 0,632*√ I, где:

  • d — диаметр провода, мм.
  • I — обмоточный ток рассчитываемой катушки, А.

При подборе магнитопровода следует соблюдать соотношение 1 к 2 ширины сердечника к его толщине. По окончании расчёта выполняется проверка заполняемости, т. е. поместится ли обмотка на каркас. Для этого площадь окна вычисляется по формуле: Sо = 50*Pт, мм2.

Особенности автотрансформатора

Автотрансформаторы рассчитываются аналогично простым трансформаторам, только сердечник определяется не на всю мощность, а на мощность разницы напряжений.

Например, мощность магнитопровода 250 Вт, на входе 220 вольт, на выходе требуется получить 240 вольт. Разница напряжений составляет 20 В, при мощности 250 Вт ток будет равен 12,5 А. Такое значение тока соответствует мощности 12,5*240=3000 Вт. Потребление сетевого тока составляет 12,5+250/220=13,64А, что как раз и соответствует 3000Вт=220В*13,64А. Трансформатор имеет одну обмотку на 240 В с отводом на 220 В, который подключён к сети. Участок между отводом и выходом мотается проводом, рассчитанным на 12,5А.

Трансформатор тороидального типа

Тороидальные трансформаторы имеют ряд преимуществ по сравнению с другими типами: меньший размер, меньший вес и при этом большее КПД. При этом они легко наматываются и перематываются. Использование онлайн-калькулятора для расчёта тороидального трансформатора позволяет не только сократить время изготовления изделия, но и «на лету» поэкспериментировать с разными вводными данными. В качестве таких данных используются:

  • напряжение входной обмотки, В;
  • напряжение выходной обмотки, В;
  • ток выходной обмотки, А;
  • наружный диаметр тора, мм;
  • внутренний диаметр тора, мм;
  • высота тора, мм.

Необходимо отметить, что почти все онлайн-программы не демонстрируют особой точности в случае расчёта импульсных трансформаторов. Для получения высокой точности можно воспользоваться специально разработанными программами, например, Lite-CalcIT, или рассчитать вручную. Для самостоятельного расчёта используются следующие формулы:

  1. Мощность выходной обмотки: P2=I2*U2, Вт.
  2. Габаритная мощность: Pg=P2/Q, Вт. Где Q — коэффициент, берущийся из справочника (0,76−0,96).
  3. Фактическое сечение «железа» в месте размещения катушки: Sch= ((D-d)*h)/2, мм2.
  4. Расчётное сечение «железа» в месте расположения катушки: Sw =√Pq/1.2, мм2
  5. Площадь окна тора: Sfh=d*s* π/4, мм2.
  6. Значение рабочего тока входной обмотки: I1=P2/(U1*Q*cosφ), А, где cosφ справочная величина (от 0,85 до 0,94).
  7. Сечение провода находится отдельно для каждой обмотки из выражения: Sp = I/J, мм2., где J- плотность тока, берущаяся из справочника (от 3 до 5).
  8. Число витков в обмотках рассчитывается отдельно для каждой катушки: Wn=45*Un*(1-Y/100)/Bm* Sch шт., где Y — табличное значение, которое зависит от суммарной мощности выходных обмоток.
  9. Остается найти выходную мощность и расчёт тороидального силового трансформатора считается выполненным. Pout = Bm*J*Kok*Kct* Sch* Sfh /0,901, где: Bm — магнитная индукция, Kok — коэффициент заполнения проводом, Kct —коэффициент заполнения железом.

Читать также: Самодельный отвал для мотоблока нева

Все значения коэффициентов берутся из справочника радиоаппаратуры (РЭА). Таким образом, проводить вычисления в ручном режиме несложно, но потребуется аккуратность и доступ к справочным данным, поэтому гораздо проще использовать онлайн-сервисы.

Работа трансформатора

Трансформатор преимущественно преобразует параметры сети в нужную форму. Понижает напряжение с 220 до 12 вольт. Тонких витков первичной обмотки много, вторичная обмотка уступает числом, жила потолще. Мощность трансформатора (учитывая КПД) передается полностью. Понижая напряжение, увеличиваем выходной ток. Замечали, если первичная обмотка трансформатора заведена на питание, вторичная лишена нагрузки, короткого замыкания не происходит. Провод медный, проводимость высокая… Происходит ввиду наличия реактивного индуктивного сопротивления трансформатора.

Расчет трансформатора

Принцип действия трансформатора на нерадивого рабочего

Витой провод начинает, грубо говоря, при протекании переменного тока взаимодействовать сам с собой. Напряжение трансформатора сдвигается фазой относительно начального, сопротивление резко возрастает. Выше частота сети, эффекты заметнее. Точнее, выведена строгая зависимость:

R = ω L,

ω = 2 П f – круговая частота; L – индуктивность. П = 3,14 – число Пи; f – частота сети, выраженная герцами. Сопротивление индуктивности трансформатора мнимая величина, пренебрегая вкладом медной жилы в активную составляющую. Вектор лежит перпендикулярно оси действительных чисел. Из-за наличия чисто мнимого сопротивления происходит сдвиг фаз меж током и напряжением. Равен 90 градусов (определяет соотношение омического сопротивления проволоки, величины индуктивности).

Получив питание розетке, трансформатор короткого замыкания не демонстрирует. Индуктивности 100 мГн дает сопротивление R = 2 х 3,14 х 50 х 100 / 1000 = 31,4 Ом. Приближенно соответствует току 7 А сети 220 вольт. Мощность получается 1,5 кВт. Величина индуктивности встречается выше. Чтобы холостой ход трансформатора (лишенный нагрузки вторичной обмотке) работал, входное сопротивление увеличивают. Провели расчет, отбрасывая вклад омической составляющей. Складывается с мнимой правилом прямоугольного треугольника. Гипотенуза станет искомой величиной. Величина получается комплексной, термин сопротивлением заменяются уместным словом импеданс.

Расчет трансформатора

Линии напряженности магнитопровода

Обсудим происходящее, когда трансформатор получает нагрузку. Первичная обмотка генерирует магнитное поле. Направлено перпендикулярно площади витков. Энергию доносит вторичной обмотке магнитопровод. Годится любая сталь (ферромагнитный материал). Электротехническая наделена двумя особенностями:

  1. Обычная сталь выказывает склонность перемагничиваться. Параллельно металл нагревается, забирая энергию магнитного поля. Считается паразитным эффектом трансформатора, сталь применяется специальная электротехническая. Проще достать, разобрав старый трансформатор. Во времена перестройки, развала СССР людям нечего было кушать, сдавали медь большими количествами. Магнитопроводы трансформаторов валялись повсеместно.
  2. Состоят из пластин. Магнитное поле идет вдоль оси провода. Траектория квадрата (см. рисунок). Возникают попытки наведения круговых токов в перпендикулярной плоскости (правило буравчика). Эффект блокируется разбиением единого магнитопровода изолированными взаимно пластинами, лежащими рядом подобно колоде карт. Для разделения используется специальный лак.

В одном месте магнитопровода трансформатора намотана первичная обмотка, в другом – вторичная. Поле идет, следуя заданной траектории, наводит на выходных витках ЭДС (полезные вихревые токи). Контакт вторичной обмотки трансформатора формируют напряжение. Бонусом использования трансформатора выступает гальваническая развязка. Трансформатором убирается связь по постоянному току.

Следуя числу витков первичной, вторичной обмоток, соотношению числа, возникает нужный коэффициент передачи. Выбираются сечения провода.

Альтернативный метод по габаритам

Ориентировочные параметры трансформатора, исходя из имеющегося в наличии сердечника, допускается определить иным путем., а затем сделать выводы о возможности дальнейшего использования.

Популярные статьи  Феррорезонанс в электрических цепях

Зная площадь сечения магнитопровода в квадратных сантиметрах, можно оценить максимальную мощность, которую способен обеспечить данный преобразователь:

Следует иметь в виду, что данная мощность является габаритной, а реальная будет иметь меньшее значение:

Обычно, при условии соответствия расчетной мощности и требуемой, первичную обмотку, подключаемую в сеть 220 В, можно оставить нетронутой, заново рассчитав только параметры на выходах.

Расчет трансформатора

Низкий коэффициент мощности: причины и последствия

Низкий показатель приводит к максимуму устранения энергетической составляющей. Используются специальные приборы для компенсации, которые позволяют снизить потребление электричества и увеличить кпд устройства.

Расчет трансформатора

Нагрузочные потери в элементах сети

Нагрузочные приводят к перераспределению и снижению энергетической составляющей. Уровень напряжения падает, что обуславливает значительный перегрев устройства. Следствие — потеря эффективности и работоспособности, быстрый выход оборудования из строя.

Специалист минимизируют силы нагрузочного типа. Это позволяет увеличить показатели пускового момента устройства.

Потери в силовом трансформаторе

Коэффициент, обладающий разрозненными характеристиками, вызывает уход электроэнергии. Энергия неправильно распределяется. Увеличив рассматриваемый показатель удается достигнуть необходимых характеристик. В условиях значительной стоимости энергия в современных реалиях для предприятия снижение потерь становится первостепенной задачей. Дополнительно можно подключить нагрузку.

Расчет трансформатора

Как вам статья?

Мне нравится2Не нравится

Расчет трансформатора Павел Бакалавр «210400 Радиотехника» – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать Пишите свои рекомендации и задавайте вопросы

Рекомендации по сборке и намотке

При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.

Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.

При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах.

Что такое коэффициент трансформации

Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.

В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.

Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:

  • первичной;
  • вторичной.

Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.

Для силового трансформатора

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

Формула по вычислению коэффициента трансформации

где:

  • U1 и U2 — напряжение в первичной и вторичной обмотки,
  • N1 и N2 — количество витков в первичной и вторичной обмотке,
  • I1 и I2 — ток в первичной и вторичной обмотки.

Трансформатор тока

Формула для вычисления коэффициента трансформации ТТ:

Значения коэффициентов обычно очень большие по сравнению с силовым трансформатор. Величины могут быть такими, как представлено в таблице:

Определим коэфф. трансформации: возьмём ТТ со значениями которые выделены в таблице 600/5 = 120. Также можно взять любой трансформатор 750/5 = 150; 800/2 = 400 и тд.

Трансформатор напряжения

Формула для вычисления коэффициента трансформации ТН:

Давайте рассчитаем коэффициент трансформации для ТН который показана на фото ниже:

Нужно взять напряжение первичной обмотки(красная стрелка) и разделить на напряжение вторичной обмотки(жёлтая стрелка). 35000/100 = 350.

Коэффициент трансформации электросчетчика

Величина коэффициента трансформации широко применяется для приборов учета электроэнергии. Эти данные необходимы для правильного выбора электросчетчика и дальнейших расчетов реального энергопотребления. С этой целью используется дополнительный показатель – расчетный коэффициент учета.

Для того чтобы определить данную величину с прибора учета электроэнергии снимаются показания и умножаются на коэффициент трансформации подключенного трансформаторного устройства. Например, решая задачу, как найти нужный показатель, 60 кВт/ч нужно умножить на коэффициент, равный 20 (30, 40 или 60). В результате умножения получается 60 х 20 = 1200 кВт/ч. Полученной значение и будет реальным расходом электроэнергии.

Существуют различные виды приборов учета. По своему принципу действия они могут быть одно- или трехфазными. Они не подключаются напрямую, между ними в цепь обязательно включается трансформатор тока. Некоторые конструкции счетчиков предполагают возможность прямого включения. В сетях с напряжением до 380 вольт используются счетчики 5-20 ампер. На счетчик поступает электроэнергия в чистом виде, с постоянным значением.

В настоящее время используются индукционные приборы учета, которые постепенно заменяются электронными моделями. Они считаются устаревшими, поскольку не могут выполнять учет потребленной электроэнергии по разным тарифам. Кроме того, они не могут передавать данные на удаленное расстояние. Поэтому на смену им приходят электронные счетчики, способные напрямую преобразовывать поступающий ток в определенные сигналы. В этих конструкциях отсутствуют вращающиеся части, что способствует существенному повышению их надежности и долговечности. Коэффициент трансформации счетчиков оказывает прямое влияние на точность получаемых данных.

Как определить мощность вторичной обмотки трансформатора?

Мощность, отдаваемая вторичной обмоткой трансформатора в общем случае равна

где Р – электромагнитная мощность трансформатора,

φ — угол между векторами ЭДС и тока,

рК2 и рS2 – потери активной и реактивной мощности во вторичной обмотке.

При работе трансформатора на активную нагрузку φ = 0, и потери реактивной мощности рS2 = 0 (у трансформаторов малой мощности они незначительны). Поэтому выражение мощности отдаваемой вторичной обмоткой будет следующее

Расчет трансформатора

Данное выражение наиболее общее для обычных условий работы основное уравнение вторичной мощности.

В следующей статье я продолжу рассматривать параметры трансформатора, такие как, плотность тока в обмотках трансформатора, электромагнитную индукцию сердечника и т.д.

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ

Конструкция и особенности

Основное конструктивное отличие броневого трансформатора (БТ) от остальных однофазных легко проследить по рисунку 1, б.

Расчет трансформатора

Рис. 1 – Схемы однофазных трансформаторов

На рисунках 1а и 1в изображены стержневой (СТ) и тороидальный (ТТ) соответственно. Схема конструкции СТ противоположна схеме БТ в плане расположения главных элементов друг относительно друга, и в первом наоборот – сердечник охвачен обмотками. У БТ в сравнении с СТ выходит меньше выводов на аналогичное число обмоток, так как первичную обмотку СТ нужно распределить двумя равными частями между магнитопроводными стержнями.

В связи с этим в определенных случаях с СТ возникают трудности при размещении выводов, однако, если сердечник разъемный ленточный, тогда СТ даже будет обладать преимуществом, проявляющимся в возможности обеспечения малого зазора в сердечнике и стягивания двух его половинок.

Популярные статьи  Подключение узо в дачном доме по 2-ух проводной линии

Расчет трансформатора

Характеристика

Само по себе присутствие таких деталей ведет к увеличению веса и объема. Броневая конструкция в некоторой степени уменьшает габариты БТ, при этом боковые ярма выполняют функцию защиты от механического воздействия для обмоток

Это крайне важно, при малых габаритах, отсутствии кожуха и расположении вместе с другим оборудованием на схеме, а не отдельно. В ТТ наименьшее количество элементов, значит его габариты меньше всего подвержены разрастанию, но при этом он является и конструктивно наименее технологичным

Технологические недостатки выражены, во-первых, в необходимости последовательного выполнения сердечника и катушек (удлинение цикла производства), во-вторых, в низкой производительности во время наматывания последних.

В дополнение к этому, станок тороидальной намотки существенно более сложен и дорогостоящий, по сравнению с обычными станками рядовой намотки, и не может быть использован в целях наматывания провода, диаметр которого превышает 2 мм. Это сужает область применения ТТ на высоких мощностях, в то же время на очень малых окна сердечника может не хватать для прохождения челнока. Особенно затруднительно наматывание ТТ при заданной частоте 50 Гц, когда витков нужно очень много.

На фоне вышеописанного проявляется еще один значительный плюс БТ – он выступает наиболее технологичным решением в условиях малой мощности, со штампованными сердечниками. При чем его перевес в отношении СТ тоже весом – требуется только одна катушка, а не две. Вообще, разница между двумя катушками и одной всегда выходит на первые роли, когда требуются трансформаторы небольших размеров.

Расчет трансформатора

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

Расчет трансформатора

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

Расчет трансформатора

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

Расчет трансформатора

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Как уточнить плотность тока?

Если мы делаем маломощный трансформатор, то можем поиграть с плотностью тока и выбрать более тонкие провода, не опасаясь их перегрева. В книге Эраносяна дана такая табличка:

Почему плотность тока зависит от мощности трансформатора? Выделяемое количество теплоты равно произведению удельных потерь на объем провода. Рассеиваемое количество теплоты пропорционально площади обмотки и перепаду температур между ней и средой. С увеличением размера трансформатора объем растет быстрее площади и для одинакового перегрева удельные потери и плотность тока надо уменьшать. Для трансформаторов мощностью 4..5 кВА плотность тока не превышает 1..2 А/мм 2 .

Литература.

  1. Косенко С. “Расчёт импульсного трансформатора двухтактного преобразователя” // Радио, №4, 2005, с. 35 — 37, 44.
  2. Эраносян С. А.Сетевые блоки питания с высокочастотными преобразователями. — Л.: Энергоатомиздат. Ленингр. отд-ние, 1991,- 176 с: ил.
  3. С. В. Котенёв, А. Н. Евсеев. Расчет и оптимизация тороидальных трансформаторов и дросселей. — М.: Горячая линия-Телеком, 2013. — 359 с.: ил.
  4. А. Петров «Индуктивности, дроссели, трансформаторы «// Радиолюбитель, №12, 1995, с.10-11.
  5. Михайлова М.М., Филиппов В.В., Муслаков В.П. Магнитомягкие ферриты для радиоэлектронной аппаратуры. Справочник. — М.: Радио и связь, 1983. — 200 с., ил.
  6. Расчетные геометрические параметры кольцевых сердечников.
  7. Б.Ю.Семенов. Силовая электроника для любителей и профессионалов. М. : Солон-Р, 2001. — 327 с. : ил

Различные типы трансформаторного оборудования применяются в электронных и электротехнических схемах, которые востребованы во многих сферах хозяйственной деятельности. Например, импульсные трансформаторы (далее по тексту ИТ) – важный элемент, устанавливаемый практически во всех современных блоках питания.

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60
ватт

Где:Р_2
– мощность на выходе трансформатора, нами задана 60 ватт
;

U
_2
– напряжение на выходе трансформатора, нами задано 36 вольт
;

I
_2
– ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт
обычно равно не более η = 0,8
.КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Популярные статьи  Система распределения электроэнергии: определение, состав, примеры

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт
.

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1

, мощности потребляемой от сети 220
вольт,
зависит площадь поперечного сечения магнитопровода S
.

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 · √P_1.

Где:S
– площадь в квадратных сантиметрах,
P
_1 – мощность первичной сети в ваттах.

S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².

По значению S
определяется число витков w
на один вольт по формуле:

w = 50/S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50/10,4 = 4,8
витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 = 172.8 витков
,

округляем до 173 витка
.

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера
.

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,для медного провода,

принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I
.

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм
.

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА,
то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².

где
: d – диаметр провода
.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1
мм.

Площадь поперечного сечения провода диаметром 1,1
мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм²
.

Округлим до 1,0
мм².

Изтаблицывыбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм
. и площадью по0,5 мм²
.

Или два провода: – первый диаметром 1,0 мм
. и площадью сечения 0,79 мм²
,
– второй диаметром 0,5 мм
. и площадью сечения 0,196 мм²
.что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

Получается как бы один провод с суммарным поперечным сечением двух проводов.

Смотрите статьи:– «Как намотать трансформатор на Ш-образном сердечнике».– «Как изготовить каркас для Ш – образного сердечника».

Электрический аппарат – трансформатор используется для преобразования поступающего переменного напряжения в другое – исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.

Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.

Расчет — трансформатор — ток

Расчет трансформаторов тока для такой схемы имеет некоторые особенности.

Расчет трансформаторов тока при этом следует вести по сумме сопротивлений: реле РТМ с поднятым сердечником и реле РТВ — с опущенным сердечником.

Расчет трансформатора тока, компенсированного по Гобсону, производится обычным способом, с учетом необходимой нагрузки на виток каждой обмотки на сердечнике В. Можно отметить, что при этой компенсации применение больших вторичных нагрузок нежелательно, так как сердечник приходится рассчитывать в сущности на двойную номинальную нагрузку. Очевидно, что для правильности действия компенсации рабочий диапазон токов должен располагаться на прямолинейной части характеристики намагничивания.

Зависимость сопротивления реле РТВ от тока в его обмотке.

При расчете трансформаторов тока на повышенные частоты следует иметь в виду, что индуктивное сопротивление нагрузки, при данном ее коэффициенте самоиндукции, будет повышаться пропорционально частоте.

Индукция в расчетах трансформаторов тока в заводской практике до настоящего времени обычно выражается в гауссах, магнитный поток — в максвеллах.

В теории и практике расчетов трансформаторов тока часто приходится пользоваться понятием а м п е р-в и т к и. Это понятие имеет явно выраженный физический характер, связывая протекающий в проводнике обмотки ток в амперах и физическую и конструктивную величину — число витков в обмотке.

Различие в исходных данных для расчета трансформатора тока и трансформатора напряжения заключается в том, что при расчете трансформатора тока задается диапазон изменения токов ( а не напряжений) на входе от / мин до / макс, а также длительный ток / дл. Все остальные исходные данные остаются без изменения.

В книге излагаются общие методы расчета трансформаторов тока; описаны и анализируются их основные конструкции — как отечественные, так и зарубежные. Рассматриваются элементы конструкций трансформаторов тока и приводятся специфические методы их расчета. Даются некоторые сведения о магнитных материалах, используемых для изготовления трансформаторов тока.

Различие в исходных данных для расчета трансформатора тока и трансформатора напряжения заключается в том, что при расчете трансформатора тока задается диапазон изменения токов ( а не напряжений) на входе от / мин до / макс, а также длительный ток / дл. Все остальные исходные данные остаются без изменения.

Если ток срабатывания реле РТМ превышает ток срабатывания реле РТВ более чем в 3 — 4 раза, то сердечники обоих реле втягиваются практически одновременно с временем порядка 0 02 сек. Сопротивление обоих реле резко возрастает и расчет трансформатора тока следует вести по сумме сопротивлений обоих реле при поднятых сердечниках.

Бачурина разделяется на две части. В первой части дан расчетный материал. Рассмотрены физические процессы в трансформаторах тока, расчеты погрешностей трансформаторов тока, компенсация этих погрешностей, расчеты трансформаторов тока при высоких кратностях первичного тока. Далее рассмотрен вопрос о междувитковой изоляции трансформаторов тока и даны сведения о магнитных материалах для их сердечников.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: