В чем отличие блока питания от драйвера и трансформатора?

Импульсные блоки питания

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

В чем отличие блока питания от драйвера и трансформатора?

Далее стоит генератор импульсов. Главная его задача — создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

В чем отличие блока питания от драйвера и трансформатора?

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

В чем отличие блока питания от драйвера и трансформатора?

Третий элемент в схеме — импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие — это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

В чем отличие блока питания от драйвера и трансформатора?

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Преимущества импульсных блоков:

маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе

КПД от 90 до 98%

напряжение питания можно подавать в большом разбросе

при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

В чем отличие блока питания от драйвера и трансформатора?
Есть и недостатки:

усложненность сборочной схемы

сложная конструкция

если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования

Проще говоря, блок питания что обычный, что импульсный — это устройство у которого на выходе строго одно напряжение. Его конечно можно «подкрутить», но в не больших диапазонах.

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

Маркировка светодиодных лент и их различия

Один из распространенных типов светодиодного освещения — лента. Ее мощность напрямую зависит от того, сколько подключено к сети питания рабочих диодов. В производстве допускаются диоды разных габаритов, отсюда и получилось две категории лент:

  • SMD 3028;
  • SMD 5050.

Теперь рассмотрим расшифровку маркировки. Цифры 30 и 28, к примеру, указывают на конкретный размер. То есть размер светодиода будет 3,0 мм на 2,8 мм. В случае с 5050, размер будет 5,0 на 5,0 миллиметров. Ленты с маркировкой SMD 3028 могут содержать 60, 120 и 240 световых диодов. На ленте SMD 5050 может располагаться 30, 60 и 120 диодов.

Маркировка и обозначения

В принципиальных схемах и технической документации дроссели обозначаются латинской буквой L, условное графическое обозначение — в виде полуокружностей. Их количество нигде не указывается, но обычно не превышает трёх штук. Жирная точка, ставящаяся в начале полуокружностей, обозначает начало витков. Если индуктивность выполняется на каркасе, сверку изображения чертится прямая линия. Для обозначения номиналов элемента используется код из букв и цифр или цветовая маркировка.

Вам это будет интересно Какую роль выполняют каждая группа по электробезопасности

Цифры указывают на значение индуктивности, а буква — на допуск. Например, код 250 J обозначает индуктивность, равную 25 мкГн с погрешностью в пять процентов. Когда на маркировке стоит только число, то это значит, что допуск составляет 20%. Таким образом, первые две цифры обозначают числовое значение в микрогенри, а третья — множитель. Буква D ставится на высокоточных изделиях, их погрешность не превышает 0,3%.

Цветовая маркировка, в принципе, соответствует буквенно-цифровой, но только наносится в виде цветных полос. Первые две указывают на значения в микрогенри, третья — коэффициент для умножения, а четвёртая — допуск. Индуктивность дросселя, на котором изображены две оранжевые полосы, коричневая и белая, равна 33 мкГ с разрешённым отклонением в 10%.

Ремонт драйверов светодиодных ламп

Если стабилизатор тока теряет способность выполнять свои функции, это может привести к порче светодиодов

Важно вовремя определить поломку. Чтобы проверить драйвер светодиодной лампы, на его вход подают 220 В

На выходе исправного драйвера должно появиться постоянное напряжение. Причём его величина будет несколько больше, чем верхний диапазон, указанный на упаковке устройства. Такой способ прост в реализации, но не даёт возможности судить об исправности прибора.

Чтобы проверить, исправен ли драйвер, сделайте следующее:

  1. На выход стабилизатора тока установите резистор. Его сопротивление подбирается с учётом заданного тока. Определяется по закону Ома: R=U/I.
  2. Возьмите резистор с расчётным сопротивлением и соответствующей мощностью.
  3. Установив резистор, измерьте с помощью тестера напряжение на выходе. Если оно не выходит за пределы рабочего диапазона, устройство исправно.

Второй способ поиска поломок драйвера:

  1. Если в устройстве предусмотрен предохранитель, прозвоните его. Тестер должен показать, что сопротивление равно нолю. Если сопротивление стремится к бесконечности, заменяют предохранитель. Если лампа после включения в сеть горит, ремонт окончен.
  2. Если предохранитель не перегорел, ищите поломку дальше. Проверьте диодный мост.
  3. Если выпрямитель в порядке, придётся выпаять сглаживающий конденсатор и прозвонить его. Маленькое сопротивление, растущее на глазах, указывает на исправность конденсатора.
  4. Для простого драйвера подобных проверок будет достаточно, чтобы найти источник проблемы. В сложных стабилизаторах тока вам придётся прозванивать все диоды и электролитические конденсаторы.

Пытаясь найти поломку, учитывайте принцип работы схемы:

  • Линейная. В таких драйверах защита от перепадов напряжения осуществляется с помощью резисторов 5-100 Ом. Одно сопротивление ставят на вход выпрямителя (диодный мост). Для уменьшения мерцания параллельно нагрузке подключают электролитический конденсатор большой ёмкости.
  • Импульсная. В этих преобразователях стоят микросхемы, имеющие защиту от всех угроз – перегрева, перегрузок и перенапряжений. Они не должны ломаться, но с китайскими драйверами всё случается.

Проблема ремонта драйверов заключается в сложности подбора нужных микросхем. Особенно, если стабилизатор сделан в Китае.

Если ни один способ не позволяет найти причины поломки стабилизатора тока, придётся обратиться к специалисту. Или купить другой драйвер.

Можно ли использовать трансформатор вместо драйвера?

Например, наши светодиодные матрицы для прожекторов в штатном режиме работают примерно на 33 вольтах. Можно ли их подключить к трансформатору постоянного тока напряжением 33 вольта?

Можно, они будут работать. Но их процесс выгорания (потери яркости) будет сильно ускорен. Поэтому мы категорически не рекомендуем этого делать.

В последнее время на рынке появилось очень много дешевых светодиодных прожекторов, у которых в качестве одного из достоинств указано, что они «бездрайверные». Якобы это повышает надежность, т.к. электроники существенно меньше. Но об обратной стороне, указанной выше, продавцы подобных изделий всегда умалчивают.

Светодиодные ленты — подключение от блока питания или драйвера?

Отдельный вопрос это светодиодные ленты. Для них вовсе не нужны драйвера, и как известно они подключаются от привычных нам блоков питания 12-36 Вольт.

Популярные статьи  Как подключить розетку с заземлением

Казалось бы в чем подвох? Там же тоже стоят светодиоды.

А дело в том, что драйвер уже автоматически присутствует в самой ленте.

Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).

Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление устанавливается на три последовательно подключенных светодиода.

Такие участки ленты, рассчитанные на напряжение 12 Вольт называют кластерами. Эти отдельные кластеры на всем протяжении ленты подключены между собой в параллель.

И именно благодаря такому параллельному соединению, на все светодиоды подается одинаковое напряжение 12В. Благодаря кластеризации при монтаже низковольтной ленты, ее спокойно можно отрезать на мелкие кусочки, состоящие минимум из 3-х светодиодов.

Казалось бы, решение найдено и где здесь недостаток? А главный недостаток такого устройства — эти резисторы не проделывают никакой полезной работы.

Они лишь дополнительно нагревают окружающее пространство и сам светодиод возле него. Именно поэтому светодиодные ленты не светят так ярко, как нам хотелось бы. Вследствие чего, их используют лишь как дополнительный свет интерьера.

Сравните 60-70 люмен/ватт у светодиодных лент, против 120-140 лм/вт у светильников и решений на основе драйверов.

Возникает вопрос, а можно ли найти ленту без сопротивлений и подключить к ней драйвер отдельно? Да, такие устройства например применяют в светодиодных панелях.

Их часто монтируют в подвесном потолке и не только. Применяются они без сопротивлений. Еще их называют токовыми светодиодными линейками.

Именно токовыми. Здесь все отдельные участки линеек подключаются последовательно на один драйвер. И все прекрасно работает.

https://youtube.com/watch?v=DMlBMcQPvtM

Как подобрать драйвер

Если хотите получить качественное устройство, которое прослужит несколько лет и будет выполнять требуемые функции, рекомендуем избегать приобретения дешевых китайских изделий. Далеко не всегда физические параметры таковых совпадают с заявленными значениями. Не покупайте приборы, у которых отсутствуют гарантийные талоны.

Самый простой, средний по качеству и цене вариант — преобразователь тока без корпуса, подключаемый к промышленной сети напряжением 220 В. Выбирая ту или иную модификацию устройства, можно использовать его для одного или нескольких светодиодов. Это отличные элементы, применяемые в лабораторных исследованиях и экспериментах. Для квартиры и дома желательно покупать драйверы с корпусом, поскольку при его отсутствии снижаются надежность и безопасность эксплуатации.

Алгоритм работы ИБП

Принцип действия ИБП прост: напряжение на входе выпрямляется и преобразуется в электронные высокочастотные импульсы. На выходе электроцепь формирует сигнал ООС, которым осуществляется регулировка импульсов.

Преимущества использования импульсного БП очевидны:

  • небольшие размеры и вес;
  • малое энергопотребление;
  • простота в сборке;
  • низкие энергопотери;
  • высокий КПД;
  • наличие защиты;
  • низкая цена на комплектующие.

К минусам применения ИБП относят наличие электромагнитных помех ввиду их работы на импульсах высокой частоты.

В персональных стационарных компьютерах, как правило, применяют ИБП с силовым трансформатором. Для работы силовой прибор использует свойства и принципы электромагнитной индукции. Это дает возможность передавать ток без существенных потерь на большие расстояния.

Блок питания или драйвер?

Здравствуйте, мои уважаемые посетители. Давненько мы не разговаривали на светодиодную тематику, что весьма удивительно, учитывая мою страсть к этим маленьким светящимся штучкам. Но пришло время продолжить наши беседы на эту тему. Ведь я стремлюсь к тому, чтобы любой посетитель этого сайта смог, при желании, получить здесь «высшее светодиодное образование», и уйдя со страниц данного ресурса, мог в полной мере применить свои знания на практике.

Поговорим сегодня о источниках питания для светодиодов. Мы с вами (да и вы сами, и я без вас) неоднократно подключали «трехвольтовые» светодиоды к блоку питания. Но все это баловство, есть ведь светодиоды и посерьезней. Одно дело, когда вы делаете небольшой ночник на паре мелких светодиодов, другое дело, когда вы собираетесь полностью заменить освещение в доме на светодиодное. Так вот, для светодиодов высокой мощности и придумали такую штуку как драйвер

. Почему именно драйвер и что это такое рассмотрим ниже.

Как уже говорилось выше, мы неоднократно подключали светодиоды к блоку питания. Помните золотое правило такого подключения? Всегда подключать светодиод только через резистор!

Это правило мотивируется тем, что светодиод это нелинейный потребитель тока. А следовательно, он может потянуть из источника питания больше ампер, чем ему требуется для стабильной работы. В этом случае может выйти из строя как светодиод, так и блок питания; поэтому мы всегда ограничиваем ток, прежде чем отправить его к светодиоду.Блок питания 12 V, 2 A max

В этом и состоит основная слабость блока питания перед светодиодом. Блок питания — это источник, который обеспечивает стабильное напряжение, а для работы светодиода нужен стабильный ток, а не напряжение. Стабильным током БП нас обеспечить не может, вот потому и появились на свет драйверы. Если рассуждать не очень глобально, то можно заявить, что драйвер является блоком питания с ограничивающим резистором. Это не далеко от истины, но все же не совсем так. На самом деле, вместо резистора в драйверах используются заумные схемы, которые подстраиваются под любые скачки напряжения и на выходе дают необходимый, а главное стабильный ток. В случае с обычным блоком питания, все скачки напряжения будут преобразовываться в тепло выделяемое резистором. Резистор, в свою очередь, не может считаться надежным защитником светодиода. Конечно, при скачке напряжения, даже в случае если светодиод сбросит свое напряжение до нуля, — резистор все равно ограничит получаемый светодиодом ток; в результате часть мощности светодиода будет поглощена резистором. Чем больше таких скачков — тем больше мощности будет потеряно в резисторе. Светодиодный драйвер (в отличии БП с резистором) обеспечивает не только стабильный ток, но и стабильную мощность, которая не будет утеряна при скачках напряжения.

Драйвер 0,9 А, 10 W, 10-12 V

Таким образом, подведя черту под всем вышесказанным, наш выбор — светодиодный драйвер

. Попытаюсь вкратце перечислить основные достоинства этого устройства перед блоком питания:

— стабильный ток; — стабильная мощность; — срок службы светодиода гораздо выше при использовании драйвера, так как светодиод защищен от перепадов напряжения, а как результат от падения потребляемой мощности; — драйвер экономичней, так как не тратит энергию на нагрев резисторов; — светодиод подключенный к драйверу светит ярче, так как получает всю необходимую для его работы мощность и не тратит ее на нагрев резисторов.

Примечание:

светодиодные ленты всегда изготавливаются с использованием резисторов, поэтому их можно подключать к блоку питания.

Надеюсь, сегодня я был вам полезен и смог донести интересную и необходимую информацию. На этом тема источников питания для светодиодов не закрыта, и мы еще к ней неоднократно вернемся. А на сегодня это все. Прощаюсь с вами до следующих постов. Всего наилучшего.

Драйвер

Этот источник питания также переводит переменный ток в постоянный, но выдает не постоянное напряжение, а постоянную силу тока. Поэтому его еще называют источником тока. Напряжение на выходе может варьироваться в определенном диапазоне значений, указанном на корпусе драйвера и/или в технической документации. Постоянная сила тока необходима для питания светодиодных матриц и отдельных — особенно мощных — светодиодов.

Популярные статьи  Что такое гистерезис в электротехнике и электронике?

Почему? Ответ кроется в самом устройстве LED-чипа. Если сопротивление металлов с повышением их температуры растет, то у нагревающихся полупроводников, к коим относятся и LED-кристаллы, оно, наоборот, падает. Если рост силы тока в этом случае не ограничить, то светодиод быстро выйдет из строя. Для такого ограничения и необходим драйвер.

Алгоритм работы ИБП

Принцип действия ИБП прост: напряжение на входе выпрямляется и преобразуется в электронные высокочастотные импульсы. На выходе электроцепь формирует сигнал ООС, которым осуществляется регулировка импульсов.

Преимущества использования импульсного БП очевидны:

  • небольшие размеры и вес;
  • малое энергопотребление;
  • простота в сборке;
  • низкие энергопотери;
  • высокий КПД;
  • наличие защиты;
  • низкая цена на комплектующие.

К минусам применения ИБП относят наличие электромагнитных помех ввиду их работы на импульсах высокой частоты.

В персональных стационарных компьютерах, как правило, применяют ИБП с силовым трансформатором. Для работы силовой прибор использует свойства и принципы электромагнитной индукции. Это дает возможность передавать ток без существенных потерь на большие расстояния.

Виды и принцип работы импульсных источников питания

Основной принцип работы импульсного источника питания (ИИП) состоит в том, что постоянное напряжение (выпрямленное сетевое или от стороннего источника) преобразовывается в импульсное частотой до сотен килогерц. За счет этого намоточные детали (трансформаторы, дроссели) получаются легкими и компактными.

Принципиально ИИП делятся на две категории:

  • с импульсным трансформатором;
  • с накопительной индуктивностью (она также может иметь вторичные обмотки)

Первые подобны обычным трансформаторным сетевым блокам питания, выходное напряжение у них регулируется изменением среднего тока через обмотку трансформатора. Вторые работают по другому принципу – у них регулируется изменением количества накопленной энергии.

По другим признакам ИИП можно разделить на нестабилизированные и стабилизированные, однополярные и двухполярные и т.п. Эти особенности не носят столь принципиального характера.

Разновидности блоков питания

Применение нашли несколько типов инверторов, которые отличаются схемой построения:

Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему – широтно-импульсный генератор.

В чем отличие блока питания от драйвера и трансформатора?

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

В чем отличие блока питания от драйвера и трансформатора?

Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

В чем отличие блока питания от драйвера и трансформатора?

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

Проверяем конденсаторы

Начинаю гуглить по моей проблеме на спец сайтах, посвященных ремонту БП ATX. И конечно же, проблема завышенного напряжения дежурки оказывается в банальном увеличении ESR электролитических конденсаторов в цепях дежурки. Ищем эти конденсаторы на схеме и проверяем их.

Вспоминаю о своем собранном приборе ESR метре

Самое время проверить, на что он способен.

Проверяю первый конденсатор в цепи дежурки.

ESR в пределах нормы.

Находим виновника проблемы

Проверяю второй

Жду, когда на экране  мультиметра появится какое-либо значение, но ничего не поменялось.

Понимаю, что виновник, или по крайней мере один из виновников проблемы найден. Перепаиваю конденсатор на точно такой же, по номиналу и рабочему напряжению, взятый с донорской платы блока питания. Здесь хочу остановиться подробнее:

Если вы решили поставить в блок питания ATX электролитический конденсатор не с донора, а новый, из магазина, обязательно покупайте LOW ESR конденсаторы, а не обычные. Обычные конденсаторы плохо работают в высокочастотных цепях, а в блоке питания, как раз именно такие цепи.

Итак, я включаю блок питания и снова замеряю напряжение на дежурке. Наученный горьким опытом уже не тороплюсь ставить новый защитный стабилитрон и замеряю напряжение на дежурке, относительно земли. Напряжение 12 вольт и раздается высокочастотный свист.

Снова сажусь гуглить по проблеме завышенного напряжения на дежурке, и на сайте rom.by, посвященном как ремонту БП ATX  и материнских плат так и вообще всего компьютерного железа. Нахожу свою неисправность поиском в типичных неисправностях данного блока питания. Рекомендуют заменить конденсатор емкостью 10 мкФ.

Замеряю ESR на конденсаторе…. Жопа.

Результат, как и в первом случае: прибор зашкаливает. Некоторые говорят, мол зачем собирать какие-то приборы, типа вздувшиеся нерабочие конденсаторы итак видно —  они припухшие, или вскрывшиеся розочкой

Да, я согласен с этим. Но это касается только конденсаторов большого номинала. Конденсаторы относительно небольших номиналов не вздуваются. В их верхней части нет насечек по которым они могли бы раскрыться. Поэтому их просто невозможно определить на работоспособность визуально. Остается только менять их на заведомо рабочие.

Итак, перебрав свои платы был найден и второй нужный мне конденсатор на одной из плат доноров. На всякий случай было измерено его ESR. Оно оказалось в норме. После впаивания второго конденсатора в плату, включаю блок питания клавишным выключателем и измеряю дежурное напряжение. То, что и требовалось, 5,02 вольта… Ура!

Измеряю все остальные напряжения на разъеме блока питания. Все соответствуют норме. Отклонения рабочих напряжений менее 5%.  Осталось впаять стабилитрон на 6,3 Вольта.  Долго думал, почему стабилитрон именно на  6,3 Вольта, когда напряжение дежурки равно +5 Вольт? Логичнее было бы поставить на 5,5 вольт или аналогичный, если бы он стоял для стабилизации напряжения на дежурке. Скорее всего, этот стабилитрон стоит здесь как защитный, для того, чтобы в случае повышения напряжения на дежурке, выше 6,3 Вольт, он сгорел и замкнул накоротко цепь дежурки, отключив тем самым блок питания и сохранив нашу материнскую плату от сгорания при поступлении на нее завышенного напряжения через дежурку.

Вторая функция этого стабилитрона, видать, защита ШИМ контроллера от поступления на него завышенного напряжения. Так как дежурка соединена с питанием микросхемы через достаточно низкоомный резистор, поэтому на 20 ножку питания микросхемы ШИМ поступает почти то же самое напряжение, что и присутствует у нас на дежурке.

Использование светодиодного драйвера

Для 12-вольтового инструмента такой драйвер — самый простой вариант, хотя и не самый дешёвый. Единственное условие — мощность драйвера должна быть на 10–15 % больше мощности инструмента. В противном случае блок питания выйдет в защиту уже при пуске инструмента, а если запустит его, то не позволит развить достаточную мощность для затягивания шурупа.

Если, к примеру, 12-вольтовый шуруповёрт потребляет ток в 10 А, то мощность блока питания должна быть хотя бы 130 Вт. Для 30-амперного инструмента понадобится уже 400-ваттный блок питания. Найти такой прибор, конечно, не проблема, но стоимость его может превышать стоимость самого шуруповёрта.

Популярные статьи  Техническое обслуживание воздушных линий электропередачи

В чем отличие блока питания от драйвера и трансформатора?
Драйвер для светодиодной ленты самый простой, но не самый дешёвый

Как переделать шуруповёрт под такой блок питания? Если штатная батарея выходит из строя, то мы её просто разбираем, вынимаем аккумуляторы, а к клеммам подачи напряжения на инструмент припаиваем провода, подключенные к выходным зажимам драйвера, обязательно соблюдая полярность. Сам драйвер подключаем к сети через входные клеммы — и переделка окончена. Вставляем «батарею» в шуруповёрт — и пользуемся.

Если аккумулятор исправен, то его, конечно, разрушать не надо. Просто разбираем шуруповёрт и подпаиваем колодку питания к питающим клеммам самого инструмента. Колодку, естественно, выводим наружу, провод питания оснащаем ответной частью разъёма. Соединили разъём — работаем от сети. Отключили БП, установили батарею — и у нас автономный инструмент.

В чем отличие блока питания от драйвера и трансформатора?

В чем отличия драйвера от блока питания

Почему же для светодиодов нельзя применять простой БП, и для чего нужен именно драйвер?

В чем отличие блока питания от драйвера и трансформатора?

Драйвер — это устройство похожее на блок питания.

Однако, как только в него подключаешь нагрузку, он заставляет стабилизироваться на одном уровне не напряжение, а ток!

Светодиоды «питаются» электрическим током. Также у них есть такая характеристика, как падение напряжения.

Если вы видите на светодиоде надпись 10мА и 2,7В, то это означает, что максимально допустимый ток для него 10мА, не более.

При протекании тока такой величины, на светодиоде потеряется 2,7 Вольт. Именно потеряется, а не требуется для работы. Добьетесь стабилизации тока и светодиод будет работать долго и ярко.

Более того, светодиод — это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Изменяется сопротивление по графику — вольтамперной характеристике.

В чем отличие блока питания от драйвера и трансформатора?

Если на нее посмотреть, то становится видно, даже если вы не намного увеличите или уменьшите напряжение, это резко, в разы изменит величину тока.

Причем зависимость не прямо пропорциональная.

В чем отличие блока питания от драйвера и трансформатора?

Казалось бы, один раз выставь точное напряжение и можно получить номинальный ток, который необходим для светодиода. При этом, он не будет превышать предельные величины. Вроде бы и обычный блок с этим должен справиться.

Однако у всех светодиодов уникальные параметры и характеристики. При одном и том же напряжении они могут «кушать» разный ток.

В чем отличие блока питания от драйвера и трансформатора?

Мало того, эти параметры еще способны меняться при изменении окружающей температуры.

А температурный диапазон работы светодиодных светильников очень большой. Например, зимой на улице может быть -30 градусов, а летом уже все +40. И это в одном и том же месте.

Поэтому, если вы такие светильники подключите от обычного импульсного блока питания, а не от драйвера, то режим их работы будет абсолютно не предсказуем.

Работать они конечно будут, но в каком режиме светоотдачи и насколько долго неизвестно. Заканчивается такая работа всегда одинаково — выгоранием светодиода.

В чем отличие блока питания от драйвера и трансформатора?

Кстати, при превышении температуры световой поток у светодиодных светильников всегда падает, даже у тех, которые подключены через драйвер. У некачественных экземпляров световой поток падает очень сильно, стоит им поработать около часа и нагреться.

У качественных изделий световой поток с нагревом уменьшается слабо, но все же уменьшается.

В чем отличие блока питания от драйвера и трансформатора?

Поэтому каждому светильнику после запуска, нужно дать время, чтобы он вышел на свой рабочий режим и световой поток стабилизировался. Его изменение должно быть не более 10% от начального.

Многие недобросовестные производители хитрят и измеряют эти параметры сразу после включения, когда поток еще максимальный.

Если вам нужно соединить несколько светодиодов, то подключаются они последовательно. Это необходимо, чтобы через все элементы, несмотря на их разные ВАХ (вольт-амперные характеристики), протекал один и тот же ток.

В чем отличие блока питания от драйвера и трансформатора?

А уже эту последовательную цепочку подключают к драйверу. Данные цепочки можно комбинировать различными способами. Создавать последовательно-параллельные или гибридные схемы.

В чем отличие блока питания от драйвера и трансформатора?

Блок питания

Также этот прибор называют источником напряжения или источником питания со стабилизацией по напряжению. Основная его функция — понижать напряжение с «розеточных» 220 В до тех значений, что нужны вашему устройству. Большинство светодиодных лент требуют 12 В или 24 В. В последнее время стали появляться изделия, потребляющие 36 В, но пока они не столь распространены.

Помимо понижения напряжения блок питания способен «выпрямлять» переменный ток, переводя его в постоянный. Это как раз необходимо для питания светодиодных лент, ведь у них есть постоянная полярность: «плюс» и «минус». В российской сети переменного тока полярность меняется 50 раз в секунду, а в некоторых других странах — 60 раз. Для светодиодов ни то, ни другое неприемлемо. Поэтому между сетью и светодиодами, а также приборами на их основе всегда должно располагаться устройство, переводящее переменный ток (AC) в постоянный (DC).

Обратите внимание, что на корпусе блока присутствует не только маркировка выходного напряжения и полярности, но и максимальной выходной мощности. При выборе блока питания рекомендуется брать его «с запасом» — примерно на 30 % больше, чем необходимо вашему освещению

Внешние блоки питания не входящие в комплект поставки

При покупке внешнего БП нужно знать, что он будет достигать максимального КПД при мощности 80% от номинальной. Чтобы получить оптимальное значение, необходимо умножить мощность светодиодного источника света на 1,2-1,15 (коэффициент запаса).

Если блок покупается с расчетом на то, что в будущем к нему будут подключаться дополнительные источники света, то мощность светильников, которые будут подключены сразу, должна быть в 1,2 раза меньше минимальной нагрузки БП. В противном случае при включении сработает защита от холостого хода.

В чем отличие блока питания от драйвера и трансформатора?

Внешний блок желательно подключить даже к тем осветительным приборам, в которые встроены драйверы. Важна так же степень защиты БП. Если лампа будет установлена на улице или в помещении с повышенным уровнем влажности, потребуется уровень защиты IP65. Не стоит переплачивать, если система освещения устраивается в отапливаемом жилом помещении.

Структуры и схемы блоков питания

Выделяют два типа ИБП: без трансформаторов; БП с трансформатором. В бестрансформаторных БП импульсный ток напрямую идет на выпрямитель напряжения. Его схема проста и состоит из минимального набора элементов: специальная интегральная микросхема и широт-импульсный генератор. Бестрансформаторные БП имеют небольшую мощность. Так как в их схеме отсутствует гальваническая связь с сетью питания, то есть вероятность поражения электричеством.

Каждый виток обмотки имеет свой выпрямитель напряжения, таким образом обеспечивая его стабильность на выходе. В большинстве настольных ПК используются БП с силовыми трансформаторами.

Типичная схема БП с трансформатором состоит из:

  • сетевого фильтра с подавителем помех;
  • выпрямителя;
  • фильтр для сглаживания;
  • широт-импульсного преобразователя;
  • транзисторов-ключей;
  • высокочастотного трансформатора на выходе;
  • выходных и индивидуальных групповых фильтров;
  • выпрямителя.

В чем отличие блока питания от драйвера и трансформатора?

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: