Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления

Разновидности рубильников

Коммутационные аппараты, которые относятся к типу рубильников, в свою очередь, делятся на подгруппы. Выделяют разъединитель, переключатель и короткозамыкатель. В первом случае прибор прерывает подачу электричества в цепь, которая имеет незначительную силу тока. Этот тип приборов применяется для осуществления осмотра или ремонта системы. Разъединитель имеет расстояние между контактами для изоляции.

Переключатели переводит электрический ток из одной цепи в другую. Короткозамыкатель не производится и не применяется в современной аппаратуре. Он создает короткое замыкание.

В продаже представлены аппараты, совмещающие представленные функции. Например, это может быть разъединитель-выключатель. Это рубильник с камерой для гашения дуги. Он может работать как на одно, так и на два направления. Если же в таком рубильнике нет камеры для гашения дуги, этот прибор относится к группе разъединителей.

Примеры

Задача 1
Построить переходной процесс при замыкании ключа.
Е = 10 В, С = 10 мкФ, R = 1 кОм
τ = RC = 0,01сек — постоянная времени зарядки конденсатора
Uс пер = Uс уст + Uc cв Uc уст = E = 10 ВПереходные процессы в цепях переменного тока, законы коммутации, резонансные явления
переходной процесс проходит по экспоненциальному закону.
τ- постоянная времени, в течении которого свободная составляющая процесса уменьшается в раз по сравнению с начальным условием.
рассчитаем несколько характерных точек:
t = τ Uс пер1 = 10(1 -1/2,7) = 6,3 B
t = 2τ Uс пер2 = 10(1 -1/7,29) = 8,63 B
t =3 τ Uс пер3 = 10(1 -1/19,863) = 9,5 B
t =4 τ Uс пер4 = 10(1 -1/53,14) = 9,85 B
t =5 τ Uс пер5 = 10(1 -1/143,5) = 9,9 BПереходные процессы в цепях переменного тока, законы коммутации, резонансные явления
Задача 2
Построить переходной процесс при размыкании ключа.
Начальные условия Uc = Е = 10 В, С = 10 мкФ, R = 1 кОм
τ = RC = 0,01сек — постоянная времени зарядки конденсатора
Постоянная времени, в течении которого свободная составляющая процесса уменьшается в раз по сравнению с начальным условием.
Uс пер = Uс уст + Uc cв Uc уст = 0 В
Uс пер = Uс св = переходной процесс проходит по экспоненциальному закону.
рассчитаем несколько характерных точек:
t = τ Uс пер1 = 10/2,7= 3,7 B
t = 2τ Uс пер2 = 10/7,29 = 1,37 B
t =3 τ Uс пер3 = 10/19,863 = 0,5 B
t =4 τ Uс пер4 = 10/53,14 = 0,15 B
t =5 τ Uс пер5 = 10/143,5 = 0,1 BПереходные процессы в цепях переменного тока, законы коммутации, резонансные явления
Задача 3
В схеме индуктивная катушка отключается от источника постоянного напряжения и замыкается на резистор
U = 110 В, L = 5 Гн Rк = 4 Ом, R = 6 Ом
Найти ток в катушке при t = 1 сек, ее после отключения от источника и напряжение на R в начальный момент после коммутации
Решение когда источник подключен к катушке (положение ключа 1) ток в цепи определяется по закону Ома I = U/Rк =110/4 = 27,5 А
После коммутации, т.е. переключение ключа (положение ключа 2) электрическое состояние цепи описывается уравнениемПереходные процессы в цепях переменного тока, законы коммутации, резонансные явления
Напряжение UR = R I =27,5∙ 6 =165 B
Задача 4Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления
Дано: Е = 100 В; R1 = 20 Ом; R2 = 30 Ом; R3 = 10 Ом; R4= 40 Ом; C = 100 мкФ
Определить входной ток и записать выражение
Решение
1. После замыкания ключа
Запишем уравнения по законам КирхгофаПереходные процессы в цепях переменного тока, законы коммутации, резонансные явления
2. Расчет установившегося режима
Uс пер = Uс уст + Uc cв
Составим уравнения для установившегося режима:Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления
3. Решим одним из способов, определив параметры переходных характеристик через решение характеристического уравнения. Составим это уравнение:Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления
Заменим jɷ = p где p- корень характеристического уравненияПереходные процессы в цепях переменного тока, законы коммутации, резонансные явления
4. При t = 0: Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления
Uс (0+) = U(R2+R3) /(R1+R2+R3+R4)=40 B
Определяем значение А: 40 = 14,2 + A A= 25,8 B
Выражение напряжения на конденсаторе принимает вид:
5. Записать выражение для входного тока Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления
Определяем значение А: A = — 0,42
выражение для входного тока

Законы коммутации

В природе соблюдается принцип непрерывности во времени потокосцепления индуктивности и электрического заряда емкости.

Потокосцепление скачком измениться не может

Заряд емкости скачком измениться не может

Следовательно, по 1-му закону коммутации в первый момент после коммутации ток в катушке индуктивности скачком измениться не может:

по 2-му закону коммутации в первый момент после коммутации напряжение на емкости скачком измениться не может:

За начало отсчета переходного процесса принимается время, равное нулю, начальные значения тока и напряжения до коммутации определяются из начальных условий.

Анализ переходных процессов в линейных цепях с сосредоточенными параметрами сводится к решению линейных неоднородных дифференциальных уравнений на основе законов Кирхгофа.

Включив и отключив источник тока в установке мы увидим, что сила тока со временем изменится и постоянное значение силы тока в контуре с соленоидом установится не мгновенно, а через некоторый промежуток времени. В течение этого промежутка времени в цепи происходит процесс, получивший название переходного. Переходный процесс в цепи с соленоидом происходит за счет явления самоиндукции.

Уравнение цепи имеет вид:

Общее решение уравнения может быть найдено методом наложения принужденного и свободного режимов.

где

— ток принужденного режима при или частное решение неоднородного уравнения,

— ток свободного режима или общее решение однородного уравнения (с нулевой правой частью).

В общем случае . Число слагаемых зависит от порядка уравнения или числа накопителей энергии.

Свободные процессы исследуются для определения устойчивости системы. В устойчивой системе процессы должны затухать.

Принужденный режим определяет новое состояние электрической цепи после окончания переходного процесса.

До коммутации (до включения) ток в цепи отсутствовал . На основании 1-го закона коммутации

ток в индуктивности в первый момент после коммутации равен току до коммутации. В нашем примере ток равен 0.

Ток находим в виде суммы принужденной и свободной составляющих:

Свободную составляющую находим из уравнения:

Решение этого уравнения

где

k — корень характеристического уравнения, называют постоянной времени для цепи, состоящей из соленоида и резистора.

А — постоянная интегрирования, определяемая из начальных условий при t = 0 с использованием законов коммутации, в частном случае первого закона для индуктивности

Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления

Учитывая, что

Решение будет иметь вид:

Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления

Рубильник

Управление коммутационными аппаратами может производиться вручную или посредством бесконтактного реагирования на изменения в окружающей среде. Самым простым вариантом механического типа является рубильник. Его управление выполняется вручную.

Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления

Прибор применяется для коммутации в электрических цепях с напряжением, которое не превышает 660В. В продаже представлены одно-, двух- и трехполюсные разновидности агрегатов. При помощи рубильника разъединяется цепь под напряжением или без него. Известным производителем в нашей стране представленной техники является Курский электроаппаратный завод.

Рубильники могут быть бытовыми или промышленными. Первая категория рассчитана для применения в низковольтной сети, а вторая – в высоковольтной. Это востребованное оборудование, которое применяется практически повсеместно.

Режимы электрических цепей

Переход цепи из одного режима в другой, является переходным динамическим процессом. В то время, как при стационарном установившемся режиме, токи и напряжения в цепях постоянного тока остаются неизменными по времени, при переменном токе временные функции периодически изменяются. Установленные режимы при любых параметрах полностью зависят исключительно от источника энергии. Поэтому, каждый источник энергии, постоянный или переменный, создают соответствующий ток. Причем, частота переменного тока полностью совпадает с частотой источника электрической энергии.

Возникновение переходных процессов происходит, когда каким-либо образом изменяются режимы в электрических цепях. Это может быть отключение или подключение цепей, изменения нагрузок, возникновение различных аварийных ситуаций. Все эти переключения и называются коммутацией. С физической точки зрения все процессы перехода энергетических состояний соответствуют режиму до коммутации и после коммутации.

Популярные статьи  В розетке ток постоянный или переменный

Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления

Что такое коммутация каналов?

Все существующие в настоящее время телекоммуникационные сети для обеспечения требуемых функций могут использовать две разновидности связи — коммутация каналов и (или) пакетов. Что это такое и чем они отличаются друг от друга?

Начнем, пожалуй, с того, как работают сети с коммутацией каналов. Они появились ранее своих аналогов с коммутируемыми пакетами, поэтому, что неудивительно, более просты в реализации. Яркий пример сети, в которой используется коммутация каналов – это телефонная линия связи. Очевидно, что для того, чтобы два абонента могли начать общение, необходимо установить между ними связь. Абонент-инициатор набирает номер, который, фактически, является командой оборудованию телефонной станции (АТС), находящейся между ними, должным образом соединить две линии – от инициатора и от ответчика (берем пример, когда абоненты обслуживаются одной станцией). Ранее для этого применялись механические щупы на простейших датчиках положения, затем, с появлением цифровых решений, реализация изменилась, хотя принцип остался тем же. Коммутация каналов предоставляет абонентам независимую линию, которая остается закрепленной за ними до окончания сеанса связи. Преимущества очевидны: высокая надежность, отсутствие необходимости передачи контрольных пакетов. Однако данный способ соединения с увеличением количества абонентов становится слишком расточительным, так как количество каналов физически ограничено. Даже попытка решить эту проблему применением уплотнений является лишь временной мерой, определенным промежуточным решением. Кроме этого, коммутация каналов обладает одним существенным недостатком – линия связи занята все время, даже если обмена информацией между абонентами нет. К примеру, при телефонном разговоре можно положить трубку рядом с аппаратом и уйти по своим делам – канал останется зарезервированным за ними, пока не поступит сигнал разорвать связь.

Именно поэтому впоследствии на смену коммутированию каналов пришел способ коммутации пакетов. Принцип его работы предполагает кодировку и разбиение передаваемого потока данных на ряд отдельных пакетов, которые по общей линии связи передаются получателю и там объединяются в исходный поток. Чтобы понять различия указанных двух способов, можно воспользоваться аналогией с транспортной линией: при коммутации каналов линия представлена железнодорожной колеей, а поток данных – это состав из множества вагонов. Вполне понятно, что на пути следования задержки встречаются крайне редко, а надежность одна из самых высоких. В то же время, по этой колее одновременно не могут двигаться несколько составов. А вот линий с коммутацией пакетов – это скоростная автотрасса с многополосным движением. Перевозимый груз (передаваемые пакеты) разделяется на несколько машин которые, лавируя в потоке других видов транспорта, достигают места назначения, где происходит сборка изначальной конструкции. В данном примере дорога – это канал связи, а машины представляют собой пакеты данных. Они спокойно сосуществуют на одной дороге, почти не мешая перемещениям друг друга. Исключения – заторы, светофоры и внештатные ситуации (это задержки). Даже если какая-либо машина не прибыла к получателю, ее копия по запросу может быть отправлена повторно. Суммарный объем передаваемой за единицу времени информации при пакетной коммутации существенно выше, чем в случае с каналами.

В целом, коммутация это переключение чего-либо, смена состояний. В сетевой технике она формирует маршрут для прохождения данных. Особенность заключается в способе его организации. Коммутацию не стоит не путать с маршрутизацией, задачей которой является поиск оптимального пути следования.

ПОНЯТИЕ О ПЕРЕХОДНЫХ ПРОЦЕССАХ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Установившимися называются процессы, при которых напряжения и токи в цепи являются неизменными (постоянными) или синусоидальными периодическими. Переходным называют процесс в электрической цепи при переходе от одного установившегося режима к другому. Такой процесс возникает, например, при резком изменении сопротивления цепи. Если в электрической цепи имеются только источники ЭДС или тока и активные сопротивления, то переход от одного установившегося режима к другому происходит мгновенно, т. е. без переходного процесса. Возникновение переходного процесса объясняется тем, что в индуктивностях и емкостях цепи энергия не может измениться мгновенно, т. е. скачком. Для того чтобы в цепи с индуктивностью или емкостью токи или напряжения перешли от одного установившегося значения к другому, требуется время.

Длительность переходного процесса теоретически равна бесконечности. В практических расчетах с погрешностью до 3% полагают эту длительность равной Зτ, где τ — постоянная времени цепи. В расчетах с погрешностью до 1 % длительность переходного процесса считают равной 5τ.

В основу расчетов переходных процессов положены законы коммутации.

Первый закон коммутации: ток в цепи с индуктивностью не может измениться скачком.

Второй закон коммутации: напряжение на емкости не может измениться скачком.

Физический смысл первого закона коммутации заключается в том, что запас энергии в индуктивности определяется током в ней, т. е.

WL = Li2/2.

Так как энергия не может изменяться скачком, то, следовательно, и ток в индуктивности не изменяется скачком.

Запас энергии в емкости определяется напряжением на ней, т. е.

WC = Cu2/2.

Так как энергия не может измениться скачком, то, следовательно, напряжение на емкости не изменяется скачком.

Рассмотрим простейший пример переходного процесса: включение RL-цепи на постоянное напряжение U с помощью ключа S (рис. 1а).

Рис. 1. Пример переходного процесса

В этом случае до замыкания ключа ток в цепи отсутствует (I∞1=0), т. е. первый (исходный) установившийся режим заключается в равенстве тока нулю. Второй установившийся режим заключается в прохождении по цепи тока I∞2= U/R (индуктивность для постоянного тока не представляет сопротивления). В переходном процессе ток i в цепи плавно возрастает по экспоненциальному закону от нулевого значения (первый режим) до значения U/R (второй режим).

Ток в цепи называется переходным и описывается выражением

Можно представить, что ток в цепи состоит из двух составляющих (рис. 1б):

iпр+iсв

где iпр = I∞2 —принужденный; iCB = I∞2e-tTa — свободный.

Здесь е = 2,72… — основание натуральных логарифмов; Ta=L/R —постоянная времени цепи.

На рис. 1б приведены временные диаграммы переходного тока и его принужденной и свободной составляющих.

В электрических сетях при КЗ Та = 0,3 + 0,01 с, в распределительных сетях Та=0,05 с.

Переходные процессы в сложных электрических цепях при включении на постоянное или синусоидальное питающее напряжение рассчитывают с помощью операционного исчисления, а при включении на напряжение произвольной формы — при помощи интеграла Дюамеля.

Процессы в цепях при прохождении по ним коротких импульсов (длительностью в единицы — сотни микросекунд) называются волновыми. Волновые процессы возникают, например, при ударах молнии в линию, а также при коммутациях (включениях и отключениях) электрических цепей с индуктивными или емкостными элементами. Опасность волновых процессов заключается в возможности появления во время их существования импульсных перенапряжений, не допустимых для изоляции электротехнического оборудования. С целью защиты оборудования от таких перенапряжений устанавливают специальные устройства — разрядники и ограничители перенапряжений (ОПН).

4.1. Структура системы коммутации

Система коммутации комплекс оборудования, предназначенный для приема и распределения поступающей информации по направлениям связи.

Таблица 4.1 – Классификация коммутационных систем

Классификационный признак Коммутационная система
Тип коммутационного и управляющего оборудования · декадно-шаговые

· координатные

· квазиэлектронные

· электронные

Форма представления сигналов · аналоговые

· цифровые

Вид передаваемой информации · телефонные

· телеграфные

· передачи данных

· вещания

Место, занимаемое в телекоммуникационной сети · центральные

· узловые

· оконечные

· транзитные

· узлы входящих сообщений (УВС)

· узлы исходящих сообщений (УИС)

Территориальное деление · междугородные

· городские

· сельские

· учрежденческие

Емкость · малой емкости

· средней емкости

· большой емкости

Разделение каналов · с пространственным разделением

· с временным разделением

Способ коммутации · коммутация каналов

· коммутация пакетов

· коммутация сообщений

Популярные статьи  Может ли сосед подключить в распределительной коробке свой ноль к моему?

Для выполнения своих функций коммутационная система должна иметь в своем составе следующие виды оборудования (рисунок 4.1):

1) Блоки абонентских линий

(БАЛ) осуществляют подключение абонентских линий (АЛ) к системе.

2) Блоки соединительных линий

(БСЛ), к которым через КСЛ (комплекты соединительных линий) происходит подключение соединительных линий (СЛ) для связи с другими коммутационными системами.

3) Коммутационное поле

(КП) осуществляет коммутацию входящих линий с исходящими. Коммутационное поле может быть построено на основе пространственного разделения каналов и тогда в качестве коммутационных элементов используются многократные координатные соединители (МКС), герконовые реле, ферриды. Коммутационное поле с временным разделением каналов строится на основе применения импульсно-кодовой модуляции (ИКМ) и использует в качестве элементов полупроводниковые запоминающие устройства и логические интегральные микросхемы.

Система управления

(СУ) – выполняет все логические функции по управлению процессами установления соединений.

5) Генераторное оборудование

– осуществляет формирование акустических сигналов.

Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления

Рисунок 4.1 – Обобщенная структура коммутационной системы

4.3. Переходные процессы в RC-цепях

Переходные процессы в цепи рис. 4.2 будут возникать при установке ключа К в положение 1 (нулевые начальные условия) или 2 (ненулевые начальные условия).

Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления

Рис. 4.2. RC-цепь а) и переходные процессы в ней б) и в).

Переходной процесс в RC-цепи при нулевых начальных условиях. Рассмотрим случай, когда на входе цепи действует постоянное напряжение, т.е. u(t) = U.

В момент t = 0 замкнем ключ К в положение 1 и подключим постоянное напряжение к цепи.

Под действием напряжения U в цепи будет протекать ток i, который создает на резисторе R падение напряжения и заряжает емкость C. На основании второго закона Кирхгофа можно записать

Решение этого уравнения будем искать в форме суммы общего и частного решений, которые определяют свободную и принужденную составляющие:

Для определения свободной составляющей необходимо найти решение однородного дифференциального уравнения, которое получается из (4.16) приU = 0 и имеет вид:

Общее решение уравнения (4.18) определяется выражением

,                                                          (4.19)

где А – постоянная интегрирования; p – корень характеристического уравнения, полученного из (4.18) RCp + 1 = 0, откуда p = -1/RC = -1/τ, тогда (4.19) примет вид

,                                                  (4.20)

где τ = RC – постоянная времени цепи.

В установившемся режиме (после заряда конденсатора) напряжение на конденсаторе будет равно приложенному ко входу цепи напряжению, т.е. принужденная составляющая определяется уравнением:

.                                                          (4.21)

Подставляя (4.20) и (4.21) в (4.17)будем иметь

Учитывая, что в момент коммутации t = 0 и uC = 0 из (4.22) находим постоянную интегрирования А = -U, тогда (4.20)примет вид:

.                                                  (4.23)

Подставляя (4.21) и (4.23) в (4.17) получаем выражение, которое определяет как изменяется напряжение на выходе RC-цепи при подключении к ее входу источника постоянного напряжения

Учитывая (4.24)находим выражение, определяющее изменение тока в цепи

Графики изменения напряжения (4.24) и тока (4.25), поясняющие переходной процесс в RC-цепи при заряде емкости изображены на рис. 4.2,б.

Из графиков видно, что в момент подключения к RC-цепи источника постоянного напряжения ток в цепи достигает максимального значения, а напряжение на конденсаторе равно нулю , т.е. емкость ведет себя как короткозамкнутый участок цепи.

С увеличением времени ток уменьшается а напряжение на емкости увеличивается по экспоненциальному закону. Приt = 0 ток становится равным нулю, а uC = U, т.е. емкость эквивалентна разрыву цепи для постоянного тока.

Рассмотрим переходной процесс в RC-цепи при нулевых начальных условиях, когда к входу цепи подключается гармоническое воздействие. В этом случае принужденная составляющая будет иметь вид:

где

Учитывая (4.20) и (4.26) находим

  • Постоянную интегрирования А определим исходя из начальных условий, что при t = 0 uC = 0, тогда
  • .
  • Подставляя А в (4.28) находим выражение, определяющее изменение UC при подключении к RC-цепи гармонического воздействия

.          (4.29)

Ток в цепи определяется выражением

Из выражения (4.29) видно, что при подключении к RC-цепи с большой постоянной времени τ гармонического воздействия в момент, когда φu = π – φ в цепи могут возникнуть перенапряжения достигающие величины            UCmax ≈ 2UmC. Если к цепи подключается гармоническое воздействие, когда   φu = π/2 – φ, то в цепи нет переходного процесса и сразу наступает установившийся режим.

Переходной процесс в RC-цепи при ненулевых начальных условиях. Переведем ключ К в цепи рис. 4.2 в положение 2. При этом произойдет отключение цепи от источника входного воздействия и емкость будет подключена к резисторуR.

К моменту коммутации емкость была заряжена до напряжения U и в ней была запасена энергия WC = CU2/2. После коммутации емкость начинает разряжаться и энергия расходуется на резисторе R. Переходной процесс, т.е. процесс разряда емкости, определяется уравнением

.                                                  (4.30)

Решением уравнения (4.30) является выражение (4.20)

.                                  (4.31)

Постоянную интегрирования А находим из начальных условий, т.е. при     t = 0 uC = U, тогда из (4.31) определяем А = U. Подставляя значение А = U в (4.31) находим выражение, определяющее изменение напряжения в RC-цепи при разряде емкости через резистор

.                                                          (4.32)

Ток в цепи изменяется в соответствии с выражением

.                                          (4.33)

Графики изменения uC и i приведены на рис. 4.2,в.

Из графиков рис. 4.2,в и выражений (4.32) и (4.33) видно, что в начале разряда емкости (t = 0) ток в цепи и напряжение на емкости имеют максимальные значения uC = U, i = -U/R.

С увеличением времени разряда напряжение на емкости и ток в цепи стремятся к нулю по экспоненциальному закону, т.е. в цепи имеет место переходной процесс. Длительность переходного процесса зависит от постоянной времени цепиτ, который заканчивается через время t ≈ 3τ.

Популярные статьи  Электростатическая защита

Вся энергия, запасенная в конденсаторе, за время разряда преобразуется в резисторе R в тепло.

Вид кривых тока и напряжений на элементах цепи

Переходные процессы в цепях переменного тока, законы коммутации, резонансные явления

При размыкании цепи с соленоидом, в которой отсутствует разветвление, изменение силы тока протекает более сложным образом. При отключении контакты рубильника расходятся и в цепь последовательно включается сопротивление воздушного промежутка между удаляющимися друг от друга контактами рубильника. Если предположить, что проводимость воздуха весьма мала, то сила тока в такой цепи должна почти мгновенно уменьшиться до нуля, при этом в контуре возникает большая э. д. с. самоиндукции. Она может оказаться во много раз больше, чем э. д. с. источника тока, на которую рассчитана цепь, и это может привести к аварийной ситуации (лампочки в квартире иногда перегорают после выключения цепи с большой индуктивностью).

При размыкании цепи э. д. с. самоиндукции часто создает между расходящимися контактами рубильника настолько сильное электрическое поле, что происходит ионизация воздуха, возможно даже вырывание свободных электронов с поверхности контактов (явление автоэмиссии); в воздушном промежутке возникает искровой или дуговой разряд, разрушающий контакты рубильника.

Таким образом, газовый промежуток между расходящимися контактами рубильника при отключении цепи обладает проводимостью и сила тока в цепи уменьшается до нуля не мгновенно. Сопротивление газового промежутка между контактами выключающего устройства нелинейно; поэтому детальный анализ переходного процесса в этом случае оказывается достаточно сложным.

При размыкании неразветвленной цепи большой мощности со значительной силой тока (сотни и тысячи ампер и более), содержащей большие индуктивности (электродвигатели, трансформаторы), принимают специальные меры против образования дугового разряда между контактами рубильника.

Для гашения дуги применяют масляные выключатели, в которых контакты находятся в жидком масле, имеющем малую проводимость и гасящем дугу, выключатели нагрузки, вакуумные выключатели.

Дополнительно по теме

  • Возникновение переходных процессов и законы коммутации
  • Переходный, установившийся и свободный процессы
  • Короткое замыкание rL-цепи
  • Включение rL-цепи на постоянное напряжение
  • Включение rL-цепи на синусоидальное напряжение
  • Короткое замыкание rС-цепи
  • Включение rC-цепи на постоянное напряжение
  • Включение rC-цепи на синусоидальное напряжение
  • Переходные процессы в rС-цепи
  • Апериодическая разрядка конденсатора
  • Предельный случай апериодической разрядки конденсатора
  • Периодическая (колебательная) разрядка конденсатора
  • Включение rLC-цепи на постоянное напряжение
  • Общий случай расчета переходных процессов классическим методом
  • Пример классического метода
  • Переходные процессы в цепях с взаимной индуктивностью
  • Включение пассивного двухполюсника к источнику непрерывно меняющегося напряжения
  • Включение пассивного двухполюсника к источнику напряжения произвольной формы
  • Переходная и импульсная переходная характеристики
  • Запись интеграла Дюамеля при помощи импульсной переходной характеристики
  • Метод переменных состояния
  • Численные методы решения уравнений состояния
  • Дискретные модели электрической цепи
  • Переходные процессы при некорректных коммутациях
  • Определение переходного процесса при воздействии периодических импульсов напряжения

Основные разновидности выключателей

Представленные приборы коммутации имеют множество вариантов. К автоматическим разновидностям относятся устройства защитного отключения и дифференциальные выключатели. В первом случае схема УЗО способно защитить человека от поражения электрическим током при возникновении аварийной ситуации. Дифференциальные выключатели представляют собой особый тип выключателя. В его конструкции УЗО соединяется с выключателем. Это обеспечивает комплексную защиту от поражения током.

Пакетные переключатели применяются для цепей с напряжением 110-380 В. Их устанавливают с целью управления асинхронными двигателями, комплектными приборами. Такие коммутационные приборы собираются на поверхности квадратного вала. В состав системы в этом случае входит определенное количество подобных агрегатов. Здесь есть рукоятка и механизм ее фиксации. При ее повороте вал приводится в движение. Коммутирующие кулачки прибора размыкают цепь.

Автоматические выключатели общего назначения представляют собой коммутационные аппараты до 1000 В. Они могут работать как при переменном, так и постоянном токе. Имеют в своем составе привод, расцепители.

Принцип работы Switch’а (коммутатора)

Сетевой коммутатор или свитч (жарг. от англ. switch — переключатель) — устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента сети.

Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC-адресам. Коммутаторы были разработаны с использованием мостовых технологий и часто рассматриваются как многопортовые мосты.

Коммутатор хранит в памяти таблицу коммутации (хранящуюся в ассоциативной памяти), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры (фреймы) и, определив MAC-адрес хоста-отправителя, заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя не ассоциирован с каким-либо портом коммутатора, то кадр будет отправлен на все порты. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется. Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса.

Режимы коммутации

Существует три способа коммутации. Каждый из них — это комбинация таких параметров, как время ожидания и надёжность передачи.

  1. С промежуточным хранением (Store and Forward). Коммутатор читает всю информацию в кадре, проверяет его на отсутствие ошибок, выбирает порт коммутации и после этого посылает в него кадр.
  2. Сквозной (cut-through). Коммутатор считывает в кадре только адрес назначения и после выполняет коммутацию. Этот режим уменьшает задержки при передаче, но в нём нет метода обнаружения ошибок.
  3. Бесфрагментный (fragment-free) или гибридный. Этот режим является модификацией сквозного режима. Передача осуществляется после фильтрации фрагментов коллизий (кадр размером 64 байта обрабатываются по технологии store-and-forward, остальные по технологии cut-through).

Латентность, связанная с «принятием коммутатором решения», добавляется к времени, которое требуется кадру для входа на порт коммутатора и выхода с него и вместе с ним определяет общую задержку коммутатора.

Методы автоматического расцепления

Защитно-коммутационные аппараты имеют в своей конструкции реле. Они входят в состав расцепителей. Реле могут быть электромеханическими или статистическими. Производят контроль и сопоставление заданных параметров полупроводниковые материалы. Этот принцип заложен во вводных автоматах.

Электромеханические разновидности могут быть выполнены на базе электротепловых, электромагнитных или комбинированных элементов. Вводной коммутационный аппарат представленного типа устанавливается в квартирах, домах, на промышленных объектах и т. д.

Расцепители могут не иметь установленного интервала времени при выполнении срабатывания. Также в продаже присутствуют приборы с независимой выдержкой или срабатыванием с обратной зависимостью от тока.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: