Применение закона ома на практике

Применение и практический смысл

Непосредственное превращение электричества в тепловую энергию нельзя назвать экономически выгодным. Однако, с точки зрения удобства и доступности современного человечества к источникам электроэнергии различные нагревательные приборы продолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочные аппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

Почему греется проводник

Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы “трётся”, соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.

Из формулы также следует –  чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление  0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом – будет неравномерный нагрев в месте скрутки. В итоге –  подгорание с последующим пропаданием контакта.

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать  электрические цепи. В 1832 году  Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что  существует некая  зависимость между силой тока, электрическим сопротивлением  и температурой проводника.

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился  спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена  были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося  раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

Для постоянного тока

Закон Ома определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи. Наиболее популярна формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, т.е.

I = U / R где I — сила тока, измеряемая в Амперах, (A)   
U — напряжение, измеряемое в Вольтах, (V)
R — сопротивление, измеряется в Омах, (Ω)

Закон Ома, является основополагающим в электротехнике и электронике. Без его понимания также не представляется работа подготовленного специалиста в области КИП и А. Когда-то была даже распространена такая поговорка, — «Не знаешь закон Ома, — сиди дома..».

Помимо закона Ома, важнейшим является понятие электрической мощности, P:

Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U), т.е.

P = I × U где P — эл. мощность, измеряемая в Ваттах, (W)
I — сила тока, измеряемая в Амперах, (A)   
U — напряжение, измеряемое в Вольтах, (V)

Комбинируя эти две формулы, выведем зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:

Сила тока, I= U/R P/U √(P/R)
Напряжение, U= I×R P/I √(P×R)
Сопротивление, R= U/I P/I² U²/P
Мощность, P= I×U I²×R U²/R

Практический пример использования таблицы: Покупая в магазине утюг, мощностью 1 кВт (1 кВт = 1000 Вт), высчитываем на какой минимальный ток должна быть рассчитана розетка в которую предполагается включать данную покупку:
Несмотря на то, что утюг включается в сеть переменного тока, пренебрегаем его реактивным сопротивлением (см. ниже), и используем упрощенную формулу для постоянного тока. Находим в таблице I = P / U. Получаем: 1000 кВт / 220 В (напряжение сети) = 4,5 Ампера. Это и есть минимальный ток, который должна выдерживать розетка, при подключении к ней нагрузки мощностью 1 кВт.

Наиболее распространенные множительные приставки:

  • Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А. 1 миллиампер (1 mA) = 0,001 A. 1 микроампер (1 µA) = 0,000001 A.
  • Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V. 1 милливольт (1 mV) = 0,001 V. 1 микровольт (1 µV) = 0,000001 V.
  • Сопротивление, Омы (Om): 1 мегаом (1 MOm) = 1000000 Om. 1 килоом (1 kOm) = 1000 Om.
  • Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W. 1 киловатт (1 kW) = 1000 W. 1 милливатт (1 mW) = 0,001 W.

Закон Ома для участка цепи

С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.

Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. В результате этих реакций выделяется энергия, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «−».

У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.

Популярные статьи  Главная заземляющая шина (гзш): определение, назначение, требования

Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.

Математически его можно описать вот так:

Закон Ома для участка цепи

I = U/R

I — сила тока

U — напряжение

R — сопротивление

Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.

Сила тока измеряется в амперах, а подробнее о ней вы можете прочитать в нашей статье.

Давайте решим несколько задач на закон Ома для участка цепи.

Задача раз

Найти силу тока в лампочке накаливания торшера, если его включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.

Решение:

Возьмем закон Ома для участка цепи:

I = U/R

Подставим значения:

I = 220/880 = 0,25 А

Ответ: сила тока, проходящего через лампочку, равна 0,25 А

Давайте усложним задачу. И найдем силу тока, зная все параметры для вычисления сопротивления и напряжение.

Задача два

Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм2, а удельное сопротивление нити равно 1,05 Ом · мм2/м.

Решение:

Сначала найдем сопротивление проводника.

R = ρ · l/S

Площадь дана в мм2, а удельное сопротивления тоже содержит мм2 в размерности.

Это значит, что все величины уже даны в СИ и перевод не требуется:

R = 1,05 · 0,5/0,01 = 52,5 Ом

Теперь возьмем закон Ома для участка цепи:

I = U/R

Подставим значения:

I = 220/52,5 ≃ 4,2 А

Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А

А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.

Задача три

Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм2, а сила тока в цепи — 8,8 А

Решение:

Возьмем закон Ома для участка цепи и выразим из него сопротивление:

I = U/R

R = U/I

Подставим значения и найдем сопротивление нити:

R = 220/8,8 = 25 Ом

Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:

R = ρ · l/S

ρ = RS/l

Подставим значения и получим:

ρ = 25 · 0,01/0,5 = 0,5 Ом · мм2/м

Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.

Ответ: нить накаливания сделана из константана.

Чему равно напряжение.

Напряжение напрямую связано с работой тока, зарядом и сопротивлением. Чтобы измерить напряжение непосредственно в электрической цепи, к ней нужно подключить вольтметр. Он присоединяется к цепи параллельно, в отличие от амперметра, который подключается последовательно. Зажимы измерительного прибора крепятся к тем точкам, между которыми нужно вычислить напряжение. Чтобы он правильно показал значение, нужно включить цепь. На схемах вольтметр обозначается буквой V, обведенной в кружок.

Изображение вольтметра и электрической цепи

Напряжение обозначается латинской , а измеряется в . Оно равно работе, которое совершает поле при перемещении единичного заряда. Формула напряжения тока – это U = A/q, где A – работа тока, q – заряд, а U – само напряжение.

Вам это будет интересно Чему равен 1 ампер в киловаттах

Обратите внимание! В отличие от магнитного поля, где заряды неподвижны, в электрическом поле они находятся в постоянном движении. Электрическое поле

Электрическое поле

Последовательное и параллельное включение элементов

Для элементов электрической цепи (участка цепи) характерным моментом является последовательное либо параллельное соединение. Соответственно, каждый вид соединения сопровождается разным характером течения тока и подводкой напряжения. На этот счёт закон Ома также применяется по-разному, в зависимости от варианта включения элементов.

Цепь последовательно включенных резистивных элементов

Применительно к последовательному соединению (участку цепи с двумя компонентами) используется формулировка:

  • I = I1= I2 ;
  • U = U1+ U2 ;
  • R = R1+ R2

Такая формулировка явно демонстрирует, что, независимо от числа последовательно соединенных резистивных компонентов, ток, текущий на участке цепи, не меняет значения. Величина напряжения, приложенного к действующим резистивным компонентам схемы, является суммой и составляет в целом значение источника ЭДС.

При этом напряжение на каждом отдельном компоненте равно: Ux = I * Rx. Общее сопротивление следует рассматривать как сумму номиналов всех резистивных компонентов цепи.

Цепь параллельно включенных резистивных элементов

На случай, когда имеет место параллельное включение резистивных компонентов, справедливой относительно закона немецкого физика Ома считается формулировка:

  • I = I1+ I… ;
  • U = U1= U2 … ;
  • 1 / R = 1 / R1+ 1 / R2 + …

Не исключаются варианты составления схемных участков «смешанного» вида, когда используется параллельное и последовательное соединение. Для таких вариантов расчет обычно ведется изначальным расчетом резистивного номинала параллельного соединения. Затем к полученному результату добавляется номинал резистора, включенного последовательно.

Интегральная и дифференциальная формы закона

Все вышеизложенные моменты с расчетами применимы к условиям, когда в составе электрических схем используются проводники, так сказать, «однородной» структуры. Между тем на практике нередко приходится сталкиваться с построением схематики, где на различных участках структура проводников меняется. К примеру, используются провода большего сечения или, напротив, меньшего, сделанные на основе разных материалов.

Для учёта таких различий существует вариация, так называемого, «дифференциально-интегрального закона Ома». Для бесконечно малого проводника рассчитывается уровень плотности тока в зависимости от напряженности и величины удельной проводимости.

Под дифференциальный расчет берется формула: J = ό * E. Для интегрального расчета, соответственно, формулировка: I * R = φ1 – φ2 + έ Однако эти примеры скорее уже ближе к школе высшей математики и в реальной практике простого электрика фактически не применяются.

Закон Ома — мощность

Когда через резистор протекает электрический ток, он рассеивает определенную часть мощности в виде тепла.

Мощность является функцией протекающего тока I (А) и приложенного напряжения V (В):

где

Р — мощность в ваттах (В)

В сочетании с законом Ома для участка цепи, формулу можно преобразовать в следующий вид:

или

Идеальный резистор рассеивает всю энергию и не сохраняет электрическую или магнитную энергию. Каждый резистор имеет предел мощности, которая может быть рассеяна, не оказывая повреждение резистору. Это мощность называется номинальной. 

Окружающие условия могут снизить или повысить это значение. Например, если окружающий воздух горячий, то способность рассеять излишнее тепло у резистора снижается, и на оборот, при низкой температуре окружающего воздух рассеиваемая способность резистора возрастает.

На практике, резисторы редко имеют обозначение номинальной мощности. Тем не менее, большинство из резисторов рассчитаны на 1/4 или 1/8 Вт.

Ниже приведена круговая диаграмма, которая поможет вам быстро определить связь между мощностью, силой тока, напряжением и сопротивлением. Для каждого из четырех параметров показано, как вычислить свое значение.

Применение закона ома на практике

Единицы измерения: вольт, ампер и ом

Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, нам нужно уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любые другие физические величины. Для массы мы можем использовать единицы «килограмм» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. В таблице ниже приведены стандартные единицы измерения электрического тока, напряжения и сопротивления:

Единицы измерения тока, напряжения, сопротивления в таблице:

Величина Символ Единица измерения Сокращение единицы измерения
Ток I Ампер А
Напряжение V Вольт В
Сопротивление R Ом Ом

«Символ», присвоенный каждой величине, представляет собой стандартную букву латинского алфавита, используемую для представления этой величины в формулах. Подобные стандартизированные буквы распространены во всех физических и технических дисциплинах и признаны во всем мире. «Сокращение единицы измерения» для каждой величины представляет собой алфавитный символ(ы), используемый в качестве сокращенного обозначения конкретной единицы измерения.

Популярные статьи  Как рассчитать мощность узо

Каждая единица измерения названа в честь известного экспериментатора в области электричества: ампер в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта, а ом в честь немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя («Resistance» и «Voltage», соответственно), тогда как «I» для тока кажется немного странным. Предполагается, что буква «I» должна представлять «интенсивность» («Intensity»)(потока заряда). Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые разногласия по поводу значения слова «I». Другой символ напряжения, «E», означает «электродвижущую силу» («Electromotive force»). Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах «E» зарезервировано для обозначения напряжения на источнике (таком как батарея или генератор), а «V»– для обозначения напряжения на любом другом элементе.

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (так называемые «мгновенные» значения). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», тогда как пиковое напряжения при ударе молнии в тот самый момент, когда она попадает в линию электропередачи, скорее всего, будет обозначаться строчной буквой «е» (или строчной буквой «v»), чтобы отметить это значение как имеющееся в один момент времени. Это же соглашение о нижнем регистре справедливо и для тока: строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений в цепях постоянного тока, которые стабильны во времени, будут обозначаться заглавными буквами.

Где может пригодиться этот закон Джоуля-Ленца?

В электротехнике есть понятие длительно допустимого тока протекающего по проводам. Это такой ток, который провод способен выдержать длительное время (то есть, бесконечно долго), без разрушения провода (и изоляции, если она есть, потому что провод может быть и без изоляции). Конечно, данные вы теперь можете взять из ПУЭ (Правила устройства электроустановок), но получали эти данные исключительно на основе закона Джоуля-Ленца.

В электротехнике так же используются плавкие предохранители. Их основное качество – надёжность срабатывания. Для этого используется проводник определенного сечения. Зная температуру плавления такого проводника можно вычислить количество теплоты, которое необходимо, чтобы проводник расплавился от протекания через него больших значений тока, а вычислив ток, можно вычислить и сопротивление, которым такой проводник должен обладать. В общем, как вы уже поняли, применяя закон Джоуля-Ленца можно рассчитать сечение или сопротивление (величины взаимозависимы) проводника для плавкого предохранителя.

А ещё, помните, мы говорили про . Там на примере лампочки я рассказывал парадокс, что более мощная лампа в последовательном соединении светит слабее. И наверняка помните почему: падение напряжения на сопротивлении тем сильнее, чем меньше сопротивление. А поскольку мощность — это , а напряжение очень сильно падает, то и выходит, что большое сопротивление выделит большое количество тепла, то есть, току придется больше потрудиться, чтобы преодолеть большое сопротивление. И количество тепла, которое выделит ток при этом можно посчитать с помощью закона Джоуля-Ленца. Если брать последовательное соединение сопротивлений, то использовать лучше выражение через квадрат тока, то есть, изначальный вид формулы:

А для параллельного соединения сопротивлений, поскольку ток в параллельных ветвях зависит от сопротивления, в то время, как напряжение на каждой параллельной ветви одинаковое, то формулу лучше всего представить через напряжение:

Примерами работы закона Джоуля-Ленца вы все пользуетесь в повседневной жизни – в первую очередь это всевозможные нагревательные приборы. Как правило, в них используется нихромовая проволока и толщина (поперечное сечение) и длина проводника подбираются с учётом того, чтобы длительное тепловое воздействие не приводило к стремительному разрушению проволоки. Точно таким же образом добиваются свечения вольфрамовой нити в лампе накаливания. По этому же закону определяют степень возможного нагрева практически любого электротехнического и электронного устройства.

В общем, несмотря на кажущуюся простоту, закон Джоуля-Ленца играет в нашей жизни очень огромную роль. Этот закон дал большой толчок для теоретических расчётов: выделение тепла токами , вычисление конкретной температуры дуги, проводника и любого другого электропроводного материала, потери электрической мощности в тепловом эквиваленте и т.д.

Вы можете спросить, а как перевести Джоули в Ватты и это довольно частый вопрос в интернете. Хотя вопрос несколько неверный, читая далее, вы поймёте почему. Ответ довольно прост: 1 дж = 0.000278 Ватт*час, в то время, как 1 Ватт*час = 3600 Джоулей. Напомню, что в Ваттах измеряется потребляемая мгновенная мощность, то есть непосредственно используемая пока включена цепь. А Джоуль определяет работу электрического тока, то есть мощность тока за промежуток времени. Помните, в законе Ома я приводил аллегорическую ситуацию. Ток – деньги, напряжение – магазин, сопротивление – чувство меры и денег, мощность – количество продуктов, которые вы сможете на себе унести (увезти) за один раз, а вот как далеко, как быстро и сколько раз вы сможете их увезти – это работа. То есть, сравнить работу и мощность никак не получается, но можно выразить в более понятных нам единицам: Ваттах и часах.

Думаю, что теперь вам не составит труда применить закон Джоуля-Ленца в практике и теории, если таковое потребуется и даже сделать перевод Джоулей в Ватты и наоборот. А благодаря пониманию, что закон Джоуля-Ленца это произведение электрической мощности на время, вы сможете более легко его запомнить и даже, если вдруг забыли основную формулу, то помня всего лишь закон Ома можно снова получить закон Джоуля-Ленца. А я на этом с вами прощаюсь.

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Разбираемся что такое ток и сопротивление

Начнем с понятия электрического тока. Если говорить коротко, электрический ток применительно к металлам — это направленное движение электронов — отрицательно заряженных частиц. Их обычно представляют в виде небольших кружочков. В спокойном состоянии они передвигаются хаотически, постоянно меняя свое направление. При определенных условиях — возникновении разницы потенциалов — эти частицы начинают определенное движение в какую-то сторону. Вот это движение и есть электрический ток.

Чтобы было понятнее,  можно сравнить электроны с водой, разлитой на какой-то плоскости. Пока плоскость неподвижна, вода не движется. Но, как только появился наклон (возникла разница потенциалов), вода пришла в движение. С электронами примерно так же.

Примерно так можно себе представить электрический ток

Теперь надо понять, что такое сопротивление и почему с силой тока у них обратная связь: чем выше сопротивление, тем меньше ток. Как известно, электроны движутся по проводнику. Обычно это металлические провода, так как металлы обладают хорошей способностью проводить электрический ток. Мы знаем, что металл имеет плотную кристаллическую решетку: много частиц, которые расположены близко и связаны между собой. Электроны, пробираясь между атомами металла, на них наталкиваются, что затрудняет их движение. Это помогает проиллюстрировать сопротивление, которое оказывает проводник. Вот теперь становится понятным, почему, чем выше сопротивление, тем меньше сила тока — чем больше частиц, тем электронам сложнее преодолевать путь, делают они это медленнее. С этим, вроде, разобрались.

Если у вас есть желание проверить эту зависимость опытным путем, найдите переменный резистор, соедините последовательно резистор — амперметр — источник тока (батарейка). Еще желательно в цепь вставить выключатель — обычный тумблер.

Популярные статьи  Что такое транзистор и как он работает?

Цепь для проверки зависимости силы тока от сопротивления

Крутя ручку резистора вы изменяете сопротивление. При этом показания на амперметре, который измеряет силу тока, тоже меняются. Причем чем больше сопротивление, тем меньше отклоняется стрелка — меньше ток. Чем сопротивление меньше — тем сильнее отклоняется стрелка — ток больше.

Зависимость тока от сопротивления почти линейная, то есть на графике отражается почти прямой линией. Почему почти — об этом надо говорить отдельно, но это другая история.

Закон Кирхгофа

Пусть имеется произвольная разветвленная сеть проводников. В отдельных участках включены разнообразные источники тока. ЭДС источников постоянны и будем считать известными. При этом токи во всех участках цепи и разности потенциалов на них можно вычислить при помощи закона Ома и закона сохранения заряда.

Для упрощения решения задач по расчетам разветвлённых электрических цепей, имеющих несколько замкнутых контуров, несколько источников ЭДС, используют законы (или правила) Кирхгофа. Правила Кирхгофа служат для того, чтобы составить систему уравнений, из которой находят силы тока в элементах сложной разветвленной цепи.

Первый закон Кирхгофа

Сумма токов в узле цепи с учетом их знаков равна нулю:

Первое правило Кирхгофа является следствием закона сохранения электрического заряда. Алгебраическая сумма токов, сходящихся в любом узле цепи — это заряд, который приходит в узел за единицу времени.

При составлении уравнение используя законы Кирхгофа важно учитывать знаки с которыми силы токов входят в эти уравнения. Следует считать, что токи, идущие к точке разветвления, и исходящие от разветвления имеют противоположные знаки

При этом нужно для себя определить какое направление (к узлу или от узла) считать положительным.

Второй закон Кирхгофа

Произведение алгебраической величины силы тока (I) на сумму вешних и внутренних сопротивлений всех участков замкнутого контура равно сумме алгебраических значений сторонних ЭДС () рассматриваемого контура:

Каждое произведение определяет разность потенциалов, которая существовала бы между концами соответствующего участка, если бы ЭДС в нем была равно нулю. Величину называют падением напряжения, которое вызывается током.

Второй закон Кирхгофа иногда формулируют следующим образом:

Для замкнутого контура сумма падений напряжения есть сума ЭДС в рассматриваемом контуре.

Второе правило (закон) Кирхгофа является следствием обобщенного закона Ома. Так, если в изолированной замкнутой цепи есть один источник ЭДС, то сила тока в цепи будет такой, что сумма падения напряжения на внешнем сопротивлении и внутреннем сопротивлении источника будет равна сторонней ЭДС источника. Если источников ЭДС несколько, то берут их алгебраическую сумму. Знак ЭДС выбирается положительным, если при движении по контуру в положительном направлении первым встречается отрицательный полюс источника. (За положительное направление обхода контура принимают направление обхода цепи либо по часовой стрелке, либо против нее).

Применим на практике закон Ома

Проверим на практике, действительно ли «работает» закон Ома. Возьмем батарейку или аккумулятор напряжением около 9 вольт. Нам нужно узнать, какой ток будет протекать, если мы замкнем цепь, подключив к ней резистор 10 кОм. Кружок с надписью «mA» на схеме обозначает наш мультиметр (тестер), настроенный на измерение амперов.

Применение закона ома на практике

Вначале проверяем теоретически. Для этого используем известные нам формулы:

U = 9 В, R = 10 кОм , I =?

I = U / R = 9 В / 10000 Ом = 0,0009 A = 0,9 мА

Значит тестер нам должен показать около 0,9 мА . Теперь соберите данную схему на макетной плате. В случае возникновения проблем вы можете использовать пример ниже. Просто будьте осторожны, чтобы не допустить короткого замыкания в цепи при установке компонентов, при замыкании можно повредить аккумулятор.

Не забудьте правильно настроить мультиметр при измерении тока!
Применение закона ома на практике Применение закона ома на практике

Результат измерения в указанной выше цепи составляет 0,95 мА . Почему по расчетам у нас получилась одна цифра, а на практике, после измерения тестером, другая? Не следует забывать, что измерения имеют погрешность. Как вы помните, из предыдущей статьи, все резисторы имеют погрешность около 5%, также, сопротивление щупов и самого мультиметра, и к тому же, батарея или аккумулятор может быть не заражена на все 9В! В среднем получается, что результат верный!

Теперь, для теста, нам нужно проверить, что произойдет, если мы подключим другой резистор, а именно 1 кОм , вместо резистора 10 кОм. Держа в голове закон Ома, мы уже должны предугадать, что подключение резистора с в 10 раз меньшим сопротивлением должно давать в 10 раз больший ток. Проверим:

Применение закона ома на практике

Что такое потенциометры?

Потенциометры представляют собой резисторы с регулируемым значением сопротивления. Поворачивая ручку потенциометра, мы влияем на его сопротивление, измеряемое между средним и крайним выводом. Примеры потенциометров:

Применение закона ома на практике

Потенциометры на схемах представлены двумя способами (символ не имеет отношения к типу элемента):

Применение закона ома на практике

В зависимости от исполнения корпуса, выводы или ножки могут быть расположены по-разному, но всегда легко выделить средний вывод, который является наиболее важным:

Применение закона ома на практике

Потенциометры — это очень умные делители напряжения: ротор, из хорошо проводящего материала, движется по резестивному веществу с постоянным сопротивлением, разделяя его на два резистора. Поэтому схема потенциометра выглядит так:

Применение закона ома на практике

Внутри, потенциометр выглядит примерно так, как показано ниже — резисторы, отмеченные красным, являются лишь символическим представлением того факта, что ротор делит резестивное вещество с постоянным сопротивлением на две части (одна, крайняя ножка + середина, а другая, крайняя + середина) .

Сумма сопротивлений двух резисторов, полученная таким образом, является постоянной, но величина резистора, на который подается напряжение, изменяется. Сопротивление между крайними выводами постоянно, средний вывод нашего резистора — переменное сопротивление.

Для облегчения понимания показан современный потенциометр в разборе:

Применение закона ома на практике Применение закона ома на практике Применение закона ома на практике

Кроме того, потенциометр можно использовать как резистор с регулируемым сопротивлением — достаточно использовать один из крайних выводов и ручку. Теперь проверим теорию на практике.

Закон Ома

Закон Ома показывает отношения между напряжением (V), током (I) и сопротивлением (R). Записано это может быть тремя разными способами:

V = I × R

или

I = V/R

или

R = V/I

Где:

  • V – напряжение в вольтах (В);
  • I – сила тока в амперах (А);
  • R – сопротивление в омах (Ом);

Для большинства схем амперы – слишком большие величины, а омы – слишком маленькие. Поэтому в формулу можно подставлять миллиамперы и килоомы. Если силу тока подставлять в миллиамперах (мА), то сопротивление обязательно должно быть в килоомах (кОм) и наоборот. Напряжение – всегда в вольтах.

Применение закона ома на практике Видоизменения закона Ома.

Чтобы проще запомнить три разные версии определения Закона Ома, можно воспользоваться «VIR-треугольником».

  • Если надо вычислить напряжение, закрываем пальцем V. У нас остаются I и R. Они на одном уровне, значит между ними ставим знак умножения. Получается: V = I × R .

  • Если вычисляем ток, закрываем пальцем I. У нас остаётся V над R. Значит напряжение делится на сопротивление:  I = V/R .
  • Аналогичным образом поступаем при вычислении сопротивления. Закрываем R. Остаётся V над I. Значит: R = V/I .

Закон Ома, определение: Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Есть также частный случай – Закон Ома для участка цепи – сила тока в участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению этого участка.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: