Про тиристоры в картинках

Маркировка радиодетали

Согласно системе, указанной в ГОСТ 10862–72, для обозначения тиристора используется буквенно-цифровой код, состоящий из четырёх символов. Первый элемент кода указывает на вид материала, из которого сделано устройство. Например, Г — германий, К — кремний, А — арсенид галлия. Второй обозначает принадлежность устройства — Н-динистор, У-триак. Третий элемент характеризует функциональность, возможности и номер партии.

Так, числа с 101 до 199 обозначают диодные и незапираемые триодные тиристоры малой мощности, а интервал от 401 до 499 — триодные запираемые тиристоры средней мощности. Последняя буква указывает на тип устройства.

Но после 1989 года была принята новая система обозначений. Поэтому тиристоры, выпускаемые с начала 1989 года, маркировались уже согласно ГОСТ 20859.1.89. В основе этого обозначения используется многозначный код, состоящий из следующих элементов:

  1. На первом месте стоит буква, указывающая тип устройства. Например, ТО — оптотиристор, ТЗ — тиристор запираемый и так далее.
  2. На втором — буква, определяющая тип цепи, в которой может работать тиристор (Ч — высокочастотная, Б — быстродействующая, И — импульсная).
  3. Третья цифра — обозначает порядковый номер.
  4. Четвёртый знак — характеризует габариты корпуса прибора.
  5. Пятый — конструктивное исполнение.
  6. Шестой — допустимый ток.
  7. Седьмой — полярность. Так, буква Х указывает на то, что катод соединён с корпусом.
  8. Восьмой — класс устройства, соответствующий импульсной разности потенциалов для закрытого состояния.
  9. Последующие цифры образуют сочетание классификационных параметров.

На схемах и в литературе тиристор подписывается латинскими буквами VS. Графически же изображается наподобие диода, то есть равностороннего треугольника с вертикальной полосой у его вершины. Через середину основания и вершину проходит линия, символизирующая электрическую цепь. Но в отличие от диода у тиристора от нижней стороны треугольника дополнительно отводится прямая линия, обозначающая управляющий электрод (У).

Виды тиристоров

Про тиристоры в картинках

Выше были рассмотрены запираемые, но существует еще немало типов полупроводниковых тиристоров, о которых также стоит упомянуть. В самых различных конструкциях (зарядные устройства, переключатели, регуляторы мощности) используются определенные типы тиристоров. Где-то требуется, чтобы управление проводилось путем подачи потока света, значит, используется оптотиристор. Его особенность заключается в том, что в цепи управления используется кристалл полупроводника, чувствительный к свету. Параметры тиристоров различны, у всех свои особенности, характерные только для них. Поэтому нужно хотя бы в общих чертах представлять, какие виды этих полупроводников существуют и где они могут применяться. Итак, вот весь список и основные особенности каждого типа:

  1. Диод-тиристор. Эквивалент этого элемента – тиристор, к которому подключен встречно-параллельно полупроводниковый диод.
  2. Динистор (диодный тиристор). Он может переходить в состояние полной проводимости, если превышается определенный уровень напряжения.
  3. Симистор (симметричный тиристор). Его эквивалент – два тиристора, включенных встречно-параллельно.
  4. Тиристор инверторный быстродействующий отличается высокой скоростью коммутации (5… 50 мкс).
  5. Тиристоры с управлением полевым транзистором. Часто можно встретить конструкции на основе МОП-транзисторов.
  6. Оптические тиристоры, которые управляются потоками света.

Эквивалент лавинного транзистора и динистора

Лавинный транзистор — полупроводниковый прибор, работающий в режиме лавинного пробоя. Такой пробой обычно возникает при напряжении, превышающем предельно допустимое значение.

Не допустить теплового пробоя (необратимого повреждения) транзистора можно при ограничении тока через транзистор (подключением высокоомной нагрузкой).

Лавинный пробой транзистора может наступать в «прямом» и «инверсном» включении транзистора. Напряжение лавинного пробоя при инверсном включении (полярность подключения полупроводникового прибора противоположна общепринятой, рекомендованной) обычно ниже, чем для «прямого» включения.

Вывод базы транзистора часто не используется (не подключается к другим элементам схемы). В ряде случаев базовый вывод соединяют с эмиттером через высокоом-ный резистор (сотни кОм — ед. МОм). Это позволяет в некоторых пределах регулировать величину напряжения лавинного пробоя.

На рис. 1 приведена схема равноценной замены «лавинного» транзистора интегрального прерывателя К101КТ1 ее дискретными аналогами. Интересно отметить, что при ближайшем рассмотрении эта схема тождественна эквивалентной схеме динистора (рис. 1), тиристора (рис. 2) и однопереходного транзистора (рис. 4).

Отметим попутно, что и вид вольт-амперных характеристик всех этих полупроводниковых приборов имеет общие характерные особенности. На их вольт-амперных характеристиках имеется S-образный участок, участок с так называемым «отрицательным» динамическим сопротивлением. Благодаря такой особенности вольт-амперной характеристики перечисленные приборы могут использоваться для генерации электрических колебаний.

Рис. 1. Аналог лавинного транзистора и динистора.

Резюме

  • Кремниевый управляемый выпрямитель, или SCR тиристор, по сути, является динистором (диодом Шокли) с дополнительным выводом. Этот дополнительный вывод называется управляющим электродом, и он используется для переключения устройства в режим проводимости (отпирает его) с помощью прикладывания небольшого напряжения. Для запуска, или отпирания, SCR тиристора напряжение должно быть приложено между управляющим электродом и катодом, плюс на управляющий электрод, минус на катод.
  • При тестировании SCR тиристора кратковременное соединение между управляющим электродом и анодом достаточно по полярности, интенсивности и продолжительности, чтобы отпереть тиристор. SCR тиристоры могут быть запущены с помощью преднамеренного запуска вывода управляющего электрода, повышенного напряжения (переключения) между анодом и катодом или повышенной скорости нарастания напряжения между анодом и катодом. SCR тиристоры могут быть выключены (заперты) падением анодного тока ниже значения тока удержания (выключение по низкому току) или «обратным переключением» управляющего электрода (прикладывание отрицательного напряжения к управляющему электроду). Обратное переключение эффективно только иногда и всегда включает в себя высокий ток через управляющий вывод.
  • Вариант SCR тиристора, называемый запираемым тиристором (GTO (Gate-Turn-Off) тиристор), специально предназначен для отключения с помощью обратного переключения. Даже в этом случае обратное переключение требует довольно высокого тока: обычно 20% от тока анода. Выводы SCR тиристора могут быть идентифицированы с помощью мультиметра в режиме «прозвонки»: единственные два вывода, показывающие какие-либо показания при «прозвонке», должны быть управляющий электрод и катод. Выводы управляющего электрода и катода подключаются к PN переходу внутри SCR тиристора, поэтому мультиметр в режиме «прозвонки» должен выдавать диодо-подобные показания между двумя этими выводами с красным (+) щупом на управляющем электроде и черным (-) щупом на катоде. Однако имейте в виду, что некоторые мощные SCR тиристоры содержат внутренний резистор, подключенный между управляющим электродом и катодом, что повлияет на любые измерения целостности соединения, проводимые мультиметром.
  • SCR тиристоры являются настоящими выпрямителями: они пропускают ток через себя только в одном направлении. Это означает, что они не могут использоваться в одиночку для двухполупериодного управления питанием переменным током. Если диоды в схеме выпрямителя заменить на SCR тиристоры, вы получите схему управляемого выпрямителя, где питание постоянным напряжением может подаваться на нагрузку пропорционально времени отпирания SCR тиристоров в разные моменты периода переменного напряжения питания.

Тиристорные светодиоды

Обычно тиристор и светодиод в одном светильнике не устанавливаются. Его место заменяет диод, который работает и на включение, и на отключение, как обычный ключ. Это связано с разными причинами, где основная – это конструкция и принцип действия самого прибора, который всегда находится в открытом состоянии. В настоящее время ученые изобрели так называемый тиристорный светодиод.

Про тиристоры в картинках
Тиристорный светодиод

Во-первых, тиристорный светодиод в своем составе кроме кремния имеет: галлий, алюминий, индий, мышьяк и сурьму. Во-вторых, спектр излучения при n-переходах между материалами создает волну длиною 1,95 мкм. А это достаточно большая оптическая мощность, если ее сравнивать с диодным элементом, который производит световые волны в том же диапазоне.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, чтобы понять, как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление между анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение между его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Характеристики и их значение

Некоторые тиристоры могут коммутировать очень большие токи, в этом случае их называют силовыми тиристорами. Они изготавливаются в металлическом корпусе — для лучшего отвода тепла. Небольшие модели с пластиковым корпусом — это обычно маломощные варианты, которые используют в малоточных схемах. Но, всегда есть исключения. Так что для каждой конкретной цели подбирают требуемый вариант. Подбирают, понятное дело, по параметрам. Вот основные:

  • Максимальный прямой ток. Значение тока, который может протекать через анод-катод. У мощных моделей он может достигать сотен Ампер.
  • Максимально допустимый обратный ток. Указывается не для всех видов, только у обратно-проводящих.
  • Прямое напряжение. Это максимально допустимое падение напряжения в открытом состоянии при прохождении максимального тока.
  • Напряжение включения. Минимальный уровень управляющего сигнала, при котором тиристор сработает.

    Пример характеристик

  • Удерживающий ток. Если ток, протекающий через анод-катод ниже этого значения, устройство переходит в запертое состояние.
  • Минимальный ток управляющего сигнала. При подаче тока ниже этого значения, элемент не откроется.
  • Максимальный ток управления. Если превысить этот параметр, p-n переход выйдет из строя.
  • Рассеиваемая мощность. Определяет величину подключаемой нагрузки.

Есть еще динамический параметр — время перехода из закрытого в открытое состояние

В некоторых схемах это важно. Может еще указываться тип быстродействия: по времени отпирания или по времени запирания

Динисторы (диоды Шокли) и тиристоры SCR (Silicon Controlled Rectifiers, управляемые кремниевые выпрямители)

Динисторы (диоды Шокли) – это довольно любопытные устройства, но довольно ограниченные в применении. Однако их полезность может быть расширена путем оснащения их другим средством отпирания. При этом каждый из них становится настоящим усилительным устройством (только если в режиме отпирания/запирания), и мы называем их кремниевыми управляемыми выпрямителями (silicon-controlled rectifier) или SCR тиристорами.

Тиристор SCR (silicon-controlled rectifier, кремниевый управляемый выпрямитель), или просто тринистор

Развитие от динистора до тринистора достигается с помощью одного небольшого дополнения, фактически не более чем третьего подключения к существующей структуре PNPN (рисунок ниже).

Про тиристоры в картинкахТиристор SCR (управляемый выпрямитель, тринистор)

Суть устройства

Термин «тиристор» произошёл из-за слияния двух слов: греческого hýra — дверь или вход и английского resistor — сопротивляющийся. Этим названием было названо полупроводниковое устройство, изготавливаемое на основе монокристалла полупроводникового вещества и обладающего тремя и более p-n переходами. При работе этот прибор может иметь два устойчивых положения:

  • закрытое — соответствующее низкой проводимости;
  • открытое — неоказывающее сопротивление прохождению тока.

То есть, перефразируя определения, можно сказать, что тиристор работает как ключ, по аналогии с дверью. В одном его состоянии замок на дверях открыт, и через неё могут свободно проходить люди (электрический ток), а в другом закрыт и дверь заперта. Поэтому нередко его называют электронный выключатель. Выражаясь же научным языком, его правильное название звучит как полупроводник с управляемым вентилем (диодом).

Принятие элементом одного из устойчивых состояний происходит быстро, но не мгновенно. Чтобы сменить одно на другое, используется напряжение. Когда оно есть, тиристор находится в открытом состоянии, а когда нет — закрывается. Для этого используется специальный дополнительный вывод. Поэтому прибор имеет три выхода и по виду похож на транзистор. При этом их принцип действия схож, только в отличие от транзистора тиристор либо полностью пропускает ток, либо препятствует его прохождению.

Принцип работы

Тиристоры по своей сути — это переключающие приборы. Структура простого элемента состоит из n-p-n-p слоёв и имеет три перехода. Два из них работают в прямом направлении, а один в обратном. Прибор имеет две крайние области, называемые анодом (p) и катодом (n). Для понимания принципа действия тиристора его можно представить в виде сдвоенных транзисторов: n-p-n и p-n-p. При этом средняя зона второго транзистора (n) соединена с крайней зоной первого.

Физические процессы, происходящие в элементе, можно описать следующим образом. При существовании лишь одного перехода в устройстве бы возникал лишь обратный ток, вызванный неосновными носителями заряда. Если к эмиттерному переходу приложить прямое напряжение, то ток коллектора увеличится, а напряжение на нём уменьшится. В транзисторе для перехода его в режим насыщения (максимальная пропускная способность) на эмиттер подаётся прямое напряжение, при этом оно между базой и коллектором снижается до единичных значений.

Так и в тиристоре. Через переходы анода и катода инжектируются неосновные заряды, приводящие к снижению сопротивления управляющего электрода. При приложении прямого напряжения, то есть к катоду — минусовой потенциал, а к аноду — плюсовой, через прибор начинает протекать небольшой ток. Это состояние соответствует закрытому положению.

При достижении напряжением определённого значения эти два явления уравновешиваются, и даже возрастание на небольшую величину напряжения приводит к возникновению лавинообразного процесса отпирания тиристора. Это состояние напоминает режим насыщения транзистора. Сопротивление перехода становится минимальным, а величина тока определяется нагрузочным сопротивлением.

Характеристики и параметры

Тиристор — это прибор, одновременно совмещающий в себе три функции: выпрямителя, выключателя и усилителя. Основные свойства, характеризующие прибор можно представить в виде следующих пунктов:

  • тиристор по подобию диода пропускает ток только в одном направлении, то есть работает как выпрямитель;
  • прибор переключается из одного состояния в другое при помощи напряжения;
  • величина тока, необходимая для переключения тиристора, составляет порядка нескольких миллиампер, при этом он может пропускать через себя десятки ампер;
  • изменяя время приложенного сигнала к управляющему выводу, можно регулировать среднее значение тока, протекающего через нагрузку, другими словами — управлять мощностью.

На характеристике используются буквенные обозначения, соответствующие ключевым точкам в работе тиристора. Так, координата (Vbo; IL) соответствует моменту включения, а точка с координатами (Vн; Iн) — открытому состоянию. Зона, лежащая на отрезке с координатами (Vbo; IL) и (Vн; Iн) считается переходной, то есть неустойчивой.

Расчет

Конечно, приведенные формулы дают приблизительный результат, так как параметры транзисторов имеют конструктивный разброс и зависят от температуры. Но эти расчеты позволяют получить начальную точку, с которой осуществляется тонкий подбор.

[Ток отпирания, мА] = [Напряжение насыщения база — эмиттер транзистора, В] / [Сопротивление R2, кОм] — [Ток управляющего электрода, мА]

Для аналога динистора ток управляющего электрода принимаем равным нулю.

[Отпирающее напряжение, В] = ([Ток отпирания, мА] + [Ток управляющего электрода, мА]) * [Сопротивление R2, кОм] + [Ток отпирания, мА] * ([Сопротивление R1, кОм] + [Сопротивление R3, кОм])

[Ток удержания, мА] = 2 * [Напряжение насыщения база — эмиттер транзистора, В] / [Сопротивление R2, кОм] — [Ток управляющего электрода, мА]

[Напряжение запирания, В] = [Напряжение насыщения база — эмиттер транзистора, В] + [Напряжение насыщения коллектор — эмиттер транзистора, В]

Применение электронных переключателей

Характеристики приборов способствуют их применению в различных электротехнических областях. Такой элемент, как тиристор нужен там, где возникает необходимость управлять мощной нагрузкой. Поэтому основным назначением устройства считается коммутация нагрузки путём использования малых токов.

Например, устройства могут применяться в гирлянде с бегущими огнями, импульсных генераторах тока, выпрямительных узлах. Их используют в схемах преобразования постоянного тока в токи промышленного значения, при этом они могут изменять и частоту сигнала. Они применяются при управлении асинхронным двигателем, в системе индукционного нагрева. На тиристорах создаются источники питания повышенной частоты для автономного потребления различными устройствами.

Преобразователи на этом элементе в несколько раз превосходят по технико-экономическим показателям конструкции, выполненные на ионных приборах. Их стоимость и масса меньше, а скорость срабатывания в несколько раз выше.

Использование тиристоров позволяет автоматизировать многие процессы, например, оптотиристором управляют открытием ширмы в театре, а симистором регулируют плавно мощность паяльников или источников освещения. А также с помощью них можно создавать датчики, регистрирующие появление света, тока или напряжения.

Важной особенность элементов является то, что они пропускают через себя высокочастотный и низкочастотный сигнал. Поэтому, собрав мостовую схему из этих устройств, можно сконструировать «трансформатор», например, для сварочного аппарата

Выпрямители

Выпрямители — устройства, предназначенные для преобразования переменного тока в постоянный,— по характеру выпрямленного тока подразделяют на одно- и двухполупериодные (одно- или двухтактные). Нагрузка R и вентиль (диод) В подключены последовательно к источнику переменного тока. Напряжение и, приложенное к вентилю проходит через вентиль и нагрузку с перерывами, равными половине периода переменного тока, поскольку вентиль пропускает только положительную полу-волну переменного тока.

Двухтактный (двухполупериодный) выпрямитель в отличие от однотактного пропускает поочередно через разные диоды (или группы диодов) ток, обусловленный обеими полуволнами приложенного переменного напряжения. В связи с этим действующее выпрямленное напряжение в схеме двухтактного выпрямления выше, чем у однотактного. В течение первого полупериода ток проходит через вентиль В1, а в течение второго — через вентиль В2. Выпрямленный ток в течение полупериода замыкается на сопротивление нагрузки R через вентили В2 и В4, а в течение второго — через вентили В1 и ВЗ. Кривая выпрямленного тока показана на рис. 129, в.

Регулируемые выпрямители на тиристорах помимо выпрямления приложенного переменного напряжения обеспечивают возможность регулирования выпрямленного напряжения, изменяя момент открытия тиристора с помощью управляющего воздействия. Особенностью тиристоров является то, что посредством управляющего импульса они могут быть только открыты, а заперты быть не могут. Запертое состояние тиристора наступает, когда проходящий через него ток снижается до нуля.

Принудительная коммутация

Про тиристоры в картинках

Основной (рабочий) тиристор Т2, при его отпирании, начинает течь ток в нагрузку и через диод D и дроссель L на конденсатор С разряжая его, после чего, когда перестал изменяться ток через дроссель конденсатор перезаряжается относительно входного напряжения создавая дополнительный источник напряжения необходимый для создания обратного напряжения для рабочего тиристора. Как недостаток схемы, большие токи через дроссель L, в случае коммутирующего конденсатора ёмкостью 4 мкф амплитуда тока около 20 ампер. Снижать ёмкость конденсатора при применении обычных, не быстрых тиристоров нет смысла, возможно не хватит времени разряда коммутирующего конденсатора через нагрузку для запирания рабочего тиристора, типовое время запирания которого150мкс, причём добавление резисторов в разрядную цепь коммутирующего конденсатора малоэффективно, можно легко превысить внутреннее сопротивление основного источника напряжения и потерять эффект шунтирования.

Для снижения габаритов (уменьшение ёмкости коммутирующего конденсатора) и увеличения диапазона регулирования можно использовать эту схему (с идеей ознакомил)

Про тиристоры в картинках

В этом случае тиристор Т1 подключает резонансную цепь LC через необходимое время.

Про тиристоры в картинках

В этой схеме значительно уменьшен ток дросселя, форма выходного напряжения на номинальной нагрузке примерно такая как фон этой странички. Исключив «иглу» вначале импульса, увидим лёгкий завал фронта, по личным впечатлениям это лучший импульс «притягивания», более уловистый. Каких то особенностей схема не имеет, в качестве сердечника дросселя L я применяю витые тороидальные сердечники из электротехнической стали сечением 0.8-1.2 кв.см., число витков 2*100. Этот ключ применён так же в приборе «Аква».

Транзисторный аналог тиристора (динистора / тринистора). Имитатор, эмулятор на транзисторах. Схема, расчет, применение.

Схема аналога тиристора (диодного и триодного) на транзисторах. Расчет параметров он-лайн. (10+)

Транзисторный аналог тиристора

В маломощных пороговых и нестандартных схемах транзисторные аналоги диодного (динистора) и триодного (тринистора) тиристоров применяются даже чаще, чем элементы, выполненные в одном кристалле. Причина в том, у серийных тиристоров высокий разброс параметров, а некоторые из очень важных для перечисленных схем параметров вообще не нормируются. А аналог можно изготовить со строго заданными параметрами.

Важнейшими параметрами тиристоров в пороговых и нестандартных схемах являются: ток отпирания (Io), напряжение отпирания или отпирающее напряжение (Uo), ток удержания (Ih), напряжение запирания или напряжение насыщения при токе удержания (Uc). Смотри вольт-амперную характеристику тиристора.

В силовых схемах аналоги не применяются потому, что сила тока базы каждого транзистора в тиристорном аналоге равна половине всего тока через схему. А у транзисторов, как правило, сила тока базы ограничена довольно небольшой величиной.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Виды тиристоров, их отличия и схемы подключения

На основе двух рассмотренных типов производятся ещё несколько разновидностей тиристоров. Каждый из них имеет свою сферу использования.

Динисторы

Динистор включается в схему подобно обычному диоду последовательно с нагрузкой. Питание может быть постоянным или переменным.

Про тиристоры в картинках

В цепи переменного напряжения также работают симметричные динисторы (двунаправленные динисторы, диаки), представляющие собой два обычных прибора, включенных встречно. Они открываются от любой полуволны синусоидального напряжения. Вольт-амперная характеристика диака симметрична – обратная ветвь также расположена в III квадранте и зеркально повторяет прямую.

Тринисторы

Самый распространенный тип в данной категории полупроводниковых приборов. В профессиональной среде триодные тиристоры называют просто тиристорами, хотя принципиально это неверно. Включается в схему тринистор также подобно обычному диоду (в цепь постоянного или переменного напряжения). Отпирание происходит при подаче на УЭ положительного напряжения (совпадающего по знаку с напряжением анода при прямом включении). У двухоперационных приборов запирание осуществляется подачей на УЭ тока противоположного направления.

Про тиристоры в картинках

Симисторы

Наряду с симметричными динисторами, существуют и симметричные тринисторы (симисторы, триаки). Они представляют собой два тринистора с общим управлением, включенные встречно-параллельно и размещенные в одном корпусе. При необходимости триак можно заменить двумя отдельными приборами, подключив их по соответствующей схеме.

Про тиристоры в картинках

ВАХ симистора также симметрична относительно нуля.

Оптотиристоры

Существуют приборы, схожие по строению и принципу действия с обычными тиристорами, но отпирание которых происходит посредством света, падающего на открытую тиристорную структуру. Если в одном корпусе объединить такой ключ и светодиод, управляемый внешним источником сигнала, то получится устройство, называемое оптотиристором (тиристорным оптроном).

Режим обратного запирания

Рассказывая о принципе работы триодного тиристора, нельзя не отметить, что оно может работать в разных режимах. При обратном запирании непосредственно к аноду полупроводника приложено отрицательное напряжение по отношению к катодному контакту. Переходы при таком варианте смещены в противоположном направлении.

Существуют факторы, ограничивающие применение подобного режима. Первый из них – это лавинный пробой, а второй – прокол обедненной области. Это объясняется тем, что существенная часть напряжения снижается на одном из переходов. Возникает их смыкание или происходит пробой.

Эквиваленты транзистора, динистора, тиристора, варикапа, замена деталей

В современных радиоэлектронных устройствах используется весьма широкий ассортимент самых разнообразных электронных приборов. Порой отсутствие одного или нескольких таких элементов может затормозить или даже прервать выполнение работы по монтажу или макетированию схемы.

Очень часто встречаются ситуации, когда необходимо один элемент заменить другим. Если речь идет о простой замене одного номинала резистора или конденсатора на другой, то решение задачи замены или подбора заменяющего номинала очевидно. Менее очевидны замены радиоэлементов, имеющих специфические, только им присущие свойства.

Ниже будут рассмотрены вопросы замены некоторых специальных полупроводниковых приборов их эквивалентами, выполненными из более доступных элементов.

В импульсной технике широко используют управляемые и неуправляемые коммутирующие элементы, имеющие вольт-амперную характеристику с N- или S-образным участком. Это лавинные транзисторы, газовые разрядники, динисторы, тиристоры, симисторы, однопереходные транзисторы, лямбда-диоды, туннельные диоды, инжекционно-полевые транзисторы и другие элементы.

В релаксационных генераторах импульсов, различных преобразователях электрических и неэлектрических величин в частоту широко используют биполярные лавинные транзисторы. Следует отметить, что специально такие транзисторы почти не выпускают. На практике в этих целях используют обычные транзисторы в необычном включении или режиме эксплуатации.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: