Расчет емкостного тока сети

Емкостный ток

Емкостный ток нелинейно зависит от потенциала электрода. На полярограммах растворов с концентрацией 10 — 5 М полярографические волны искажаются наложением емкостного тока, и определение их высот существенно затрудняется.

Емкостный ток / с возрастает линейно, пропорционально частоте, индуктивный ток IL обратно пропорционален частоте, активный ток от частоты не зависит. Точка пересечения характеристик / с и IL определяет условия резонанса.

Емкостный ток для кабельных линий 6 — 10 кв составляет 0 8 — 1 0 а на 1 км длины.

Емкостные токи при отключении ненагруженных линий могут достигнуть нескольких десятков и сотен ампер. При отключении выключателя в момент перехода тока через нулевое значение напряжение на расходящихся контактах в первый момент отсутствует.

Емкостные токи до 30 А не порождают значительных разрушений оборудования 6 — 10 кВ в зоне замыкания на землю, а также опасных перенапряжений в сети. Появляющаяся в месте повреждения дуга относительно быстро гасится и возникает устойчивое замыкание на землю.

Емкостный ток , как это видно из рис. 10 — 5, изменяется вдоль линии, от ее конца к началу, пропорционально длине линии.

Емкостные токи , токи дугогасящих реакторов, токи замыкания на землю и напряжения смещения нейтрали измеряются при вводе в эксплуатацию дугогасящих аппаратов и значительных изменениях режимов сети, но не реже 1 раза в 6 лет.

Емкостные токи / 02 имеют значения и фазы по отношению к Uu такие же, как в сети с изолированными нейтралями.

Емкостный ток не совпадает по фазе с напряжением, приложенным к зажимам цепи, и сдвинут на / 4 периода в сторону опережения.

Емкостный ток , как и индуктированный, называют обычно реактивным током.

Емкостные токи между элементами обмоток ( витки и катушки) и между обмотками и магнитопроводом трансформатора в обычных условиях работы трансформаторов ( / 1 — 5 кГц) весьма малы, и ими можно пренебречь. В трансформаторах без ферромагнитного магнитопровода Lu, L22 и М постоянны. В соответствии с изложенным в § 14 — 1 можно принять, что эти величины постоянны также для любого рассматриваемого режима работы трансформатора со стальным магнитопроводом.

Емкостный ток на землю фазы С равен нулю ( емкость этой фазы относительно земли оказывается закороченной), а емкостные токи ICA 1СВ К3 / со.

Емкостные токи величиной до 30 а, возникающие в месте повреждения электросети с изолированной нейтралью, не порождают больших разрушений оборудования или кабеля в зоне замыкания на землю, а появляющаяся при этом дуга быстро гасится.

Емкостный ток возрастает с увеличением емкости С и скорости нарастания анодного напряжения duajdt. При достижении 1с некоторой величины тиристор переходит в открытое состояние.

Источник

Последствия ОЗЗ

Несмотря на преимущества изолированной нейтрали, такой режим работы имеет ряд недостатоков:

  1. В зависимости от разветвленности сети емкостной ток может находиться в пределах от 0,1 до 500 ампер. Такая величина тока может представлять опасность для животных и людей, находящихся рядом с местом замыкания, по этой причине данные замыкания нужно выявлять и отключать, так же, как это делается и в сетях с глухозаземленной нейтралью.
  2. В большинстве случаев при ОЗЗ возникает дуговое замыкание на землю, которое может носить прерывистый характер. В таком случае, в процессе дугового замыкания возникают перенапряжения, превышающие в 2-4 раза номинальное фазное напряжение. Изоляция в процессе замыкания может не выдержать такие перенапряжения, вследствие чего возможны возникновения пробоя изоляции в любой другой точке сети и тогда замыкание развивается в двойное короткое замыкание на землю.
  3. В процессе развития и ликвидации ОЗЗ в трансформаторах напряжения возникает эффект феррорезонанса, что с высокой вероятностью приводит к их преждевременному выходу из строя.

Несмотря на перечисленные недостатки ОЗЗ не требует немедленного ликвидации повреждения. Согласно ПУЭ, при возникновении ОЗЗ возможно эксплуатация сети без отключения аварии в течении 4 часов, которые выделяются на поиск поврежденного участка.

Защита, реагирующая на наложенный ток.

Для повышения устойчивости функционирования защит от однофазных замыканий на землю, реагирующих на ток замыкания не промышленной частоты, была разработана защита, реагирующая на наложенный ток. Наложенный ток может быть частотой как выше промышленной, так и ниже. Для создания тока повышенной частоты возможно использование нелинейного сопротивления, включенного между нейтралью сети и землёй. Однако данное устройство значительно повышает стоимость таких защит и может снизить надёжность функционирования защиты. Также можно отметить тот факт, что значительная высокочастотная составляющая может присутствовать в токах присоединений и в нормальном режиме. Это в первую очередь относится к сетям, связанным с производствами, имеющими нелинейную нагрузку. В таких случаях описанный способ защиты непригоден. Кроме того, как показывают некоторые исследования, гармоники с частотой 100 Гц появляются почти в 2 раза чаще, чем, например, с частотой 25 Гц и амплитуды их намного больше.

К основным недостаткам защит, реагирующих на наложенный ток частотой ниже промышленной, можно отнести необходимость подключения в нейтрали сети специального устройства для создания контрольного тока, влияние на устойчивость функционирования защиты погрешностей ТТНП, возрастающих при уменьшении рабочей частоты, усложнение схемы первичной коммутации из-за необходимости подключения источника наложенного тока и трудности подключения источника вспомогательного тока при использовании в сети нескольких ДГР, установленных на разных объектах. Также не исключены сложности отстройки от естественных гармонических составляющих при внешних дуговых перемежающихся ОЗЗ, при которых спектр тока зависит от параметров сети и режима заземления её нейтрали, положения точки ОЗЗ в сети.

Защиты на централизованном принципе лишены недостатков индивидуальных защит, таких как ложные срабатывания, связанные с переходными процессами на неповрежденных линиях. В централизованных защитах в основном применяют сравнение амплитудных или действующих значений токов нулевой последовательности. Поврежденный фидер определяется на основе сравнения токов нулевой последовательности по всем присоединениям и выборе присоединения с максимальным током нулевой последовательности. Расчет этих значений может проводиться как в начальный момент времени, то есть, основываясь на переходных величинах замыкания, так и в установившемся режиме. Кроме того, возможно применение высших гармонических составляющих токов нулевой последовательности либо наложенного тока с частотой, отличной от промышленной. Для расширения области применения на подстанциях с большим числом присоединений, возможно введение в такие защиты дополнительной информации, которая позволяет произвести отстройку от действия в некоторых сложных режимах, например, получение информации о напряжении нулевой последовательности с другой секции шин подстанции может повысить чувствительность.

Общий контроль изоляции в распределительных сетях 6 – 35 кВ

Для выявления нарушения изоляции фаз относительно земли в электроустановках предусматривается так называемый общий контроль изоляции. Для этих целей применяется специальный трехфазный пятистержневой трансформатор напряжения, одна из вторичных обмоток которого соединяется в «разомкнутый треугольник» и является фильтром напряжения нулевой последовательности (ФННП) (Рис.7). К выходу этого фильтра присоединяется реле напряжения KV. При замыкании фазы на землю на выходе фильтра появляется напряжение нулевой последовательности 3U, под действием которого реле срабатывает и действует на сигнал. Поврежденная фаза определяется, как правило, по трем вольтметрам включенных в другую вторичную обмотку трансформатора напряжения. В этом случае показания вольтметра в поврежденной фазе будут равны нулю при металлическом замыкании и меньше фазного напряжения, если в точке замыкания имеется переходное сопротивление. Электрическая схема контроля изоляции в сетях 6 – 35 кВ представлена на Рис.7.

Популярные статьи  Жидкие диэлектрики

Рис. 7. Схема общего контроля изоляции в сети 6-10кВ

Причиной появления напряжения нулевых последовательностей 3Uявляется нарушение симметрии фазных напряжений ЛЭП относительно земли (рис. 8 г, д).

Векторные диаграммы напряжения и емкостных токов для нормального режима показано на рис. 8 а, б.

Расчет емкостного тока сети

Расчет емкостного тока сети

Рис. 8. Схемы замещения сети с изолированной нейтралью: а, б — нормальный режим сети и векторные диаграммы напряжений емкостных токов; в, г, д, е – при замыкании фазы А на землю и векторные диаграммы.

Векторные диаграммы напряжения и ёмкостных токов при замыкании фазы «А» на землю представлены на рис.8 в, г.

Симметричные составляющие напряжений и ёмкостного тока замыкания Iзпри замыкании фазы «А» на землю представлены на Рис.8 д, е.

Реальное распределение токов нулевых последовательностей 3I в конкретной распределительной сети 10кВ показано на Рис. 9.

Рис. 9. Токораспределение 3I по фидерам ЛЭП

Из приведенной на Рис. 9 схемы распределения 3I в реальной сети 10 кВ нужно уяснить следующее:

– емкостной ток нулевой последовательности 3I в неповрежденных линиях имеет направление «от линии – к шинам»; в поврежденной линии «от шин – в линию».

– емкостной ток 3I в поврежденной линии равен сумме емкостных токов от неповрежденных линий

Расчет емкостного тока сети

Эти два свойства широко используют при выполнении ряда защит от замыкания на землю.

Величина тока замыкания Iз=3Iв практических расчетах для настройки защит может определяться через удельную ёмкость Суд (мкФ/км).

где Uф–фазное напряжение;

l — длина электрически связанной сети, км.

Величина Судзависит от конструкции сетей и составляет ориентировочно:

–5.5 · 10 -3 мкф/км – для воздушных ЛЭП;

–190 ·10 -3 мкф/км – для кабельных ЛЭП.

В практике можно воспользоваться также и империческими формулами для определения тока замыкания :

– воздушные ЛЭП

– кабельные ЛЭП

где U – линейное напряжение, кВ

l – длина сетей, км

Примеры защит от замыкания фазы на землю

Защита от замыкания на базе фильтра тока нулевой

Последовательности

Для токовых защит отходящих фидеров используются специальные трансформаторы тока нулевой последовательности (ТТНП), рис. 10.

Рис. 10. Трансформатор тока нулевой последовательности:

а) — устройство; б) – установка ТТНП на кабеле

Расчетные уставки защиты. Первичный ток срабатывания защиты, выполненной на реле РТ-40/0,2 или РТЗ-50, выбирается из условия несрабатывания зашиты от броска собственного емкостного тока линии при внешнем замыкании на землю по выражению:

где kотс – коэффициент отстройки (kотс=1,1÷1,2); kб – коэффициент, учитывающий бросок собственного емкостного тока при внешних перемежающихся замыканиях на землю; IС – собственный емкостной ток. Определение IС производится:

– для кабельной ЛЭП:

где IС0 – величина IС на 1 км длины одного кабеля (табл. 2); l – длина линии; n – число кабельных линий;

– для воздушной ЛЭП:

где l – длина линии; IС0.ВЛ – величина IС на 1 км длины ВЛ (табл.3).

Синхронные и асинхронные электродвигатели

Собственный емкостной ток синхронных и асинхронных двигателей определяется по формуле 6.3 и выражеться в амперах:

  • fном. – номинальная частота сети, Гц;
  • Сд – емкость фазы статора, Ф;
  • Uном. – номинальное напряжение электродвигателя, В.

Емкость фазы статора Сд принимается по данным завода-изготовителя. Если же данные значения отсутствуют, можно воспользоваться следующими приближенными формулами :

для неявнополюсных СД и АД с короткозамкнутым ротором:

  • Sном. – номинальная полная мощность электродвигателя, МВА;
  • Uном. – номинальное напряжение электродвигателя, кВ.
  • для остальных электродвигателей:
  • Uном. – номинальное напряжение электродвигателя, В;
  • nном. – номинальная частота вращения ротора, об/мин.

Что такое емкостный ток

Емкостный ток возникает как правило на линиях с большой протяженностью. В этом случае земля и проводники работают аналогично обкладкам конденсатора, способствуя появлению определенной емкости. Поскольку обладает переменными характеристиками, это может послужить толчком к его появлению. В кабельных линиях, напряжением 6-10 киловольт, его значение может составить 8-10 ампер на 1 км протяженности.

В случае отключения линии, находящейся в ненагруженном состоянии, величина емкостного тока может достигнуть нескольких десятков и даже сотен ампер. В процессе отключения, когда наступает момент перехода тока через нулевое значение, напряжение на расходящихся контактах будет отсутствовать. Однако, в следующий момент вполне возможно образование электрической дуги.

Если значение емкостного тока не превышает 30 ампер, это не приводит к каким-либо серьезным повреждениям оборудования в зоне опасных перенапряжений и замыканий на землю. Электрическая дуга, появляющаяся на месте повреждения, достаточно быстро гаснет с одновременным появлением устойчивого замыкания на землю. Все изменения емкостного тока происходят вдоль электрической линии, в направлении от конца к началу. Величина этих изменений будет пропорциональна длине линии.

Для того чтобы уменьшить ток замыкания на землю, в сетях, напряжением от 6 до 35 киловольт, осуществляется компенсация емкостного тока. Это позволяет снизить скорость восстановления напряжения на поврежденной фазе после гашения дуги. Кроме того, снижаются перенапряжения в случае повторных зажиганий дуги. Компенсация выполняется с применением дугогасящих заземляющих реакторов, имеющих плавную или ступенчатую регулировку индуктивности.

Расчет емкостного тока сети

Настройка дугогасящих реакторов выполняется в соответствии с током компенсации, величина которого равна емкостному току замыкания на землю. При настройке допускается использование параметров излишней компенсации, когда индуктивная составляющая тока будет не более 5 ампер, а степень отклонения от основной настройки — 5%.

Выполнение настройки с недостаточной компенсацией допустимо лишь в том случае, когда мощность дугогасящего реактора является недостаточной. Степень расстройки в этом случае не должна превышать 5%. Главным условием такой настройки служит отсутствие напряжения смещения нейтрали, которое может возникнуть при несимметричных емкостях фаз электрической сети — при обрыве проводов, растяжке жил кабеля и т.д.

Для того чтобы заранее предупредить возникновение аварийных ситуаций и принять соответствующие меры, необходимо рассчитать емкостный ток на определенном участке. Существуют специальные методики, позволяющие получить точные результаты.

Расчет емкостного тока замыкания на землю воздушной линии

Емкостной ток ВЛ может быть приближенно
определен по формуле :

Iс.вл = (2,7 ÷ 3,3)
· U · l · 10-3, А,

где: U – напряжение сети, кВ (6, 10 или 35 кВ);l – длина линии, км.

Для линий 6-10 кВ, а также линий 35 кВ без тросов принимается коэффициент 2,7; для линий 35 кВ на деревянных опорах с тросами – 3,3; на металлических опорах с тросами – 3,0.

Емкостный ток двухцепной линии может быть определен по формуле:

Iс.2ц.вл = (1,6 ÷ 1,3)
· Iс.вл, А,

где: Iс.вл
емкостный ток одноцепной ВЛ, А

Популярные статьи  Как соединить медные провода сечением 6 и 10 мм.кв.?

Увеличение емкостного тока сети за счет
емкости оборудования подстанций может ориентировочно оцениваться для воздушных и
кабельных сетей 6-10 кВ – на 10%, для воздушных сетей 35 кВ – на 12%.

Для кабельных сетей 35 кВ увеличение
емкостного тока за счет оборудования подстанций учитывать не следует.

Недостаточная точность аналитического метода
определения емкостных токов замыкания на землю и напряжений несимметрии
реальных воздушных линий электропередачи определяет применение расчетов только
для предварительной оценки параметров проектируемых сетей, а также перед
прямыми их измерениями.

Справочные данные
по емкостным токам однофазного замыкания на землю кабельных линий

Ниже приведены некоторые данные с каталогов
заводов-изготовителей кабельной продукции и различной литературы.

Завод Южкабель, кабели из сшитого полиэтилена

Расчет емкостного тока сети

Кабели из сшитого полиэтилена Nexans

Расчет емкостного тока сети

Емкостные токи кабельных линий согласно СТП
09110.20.187-09. Методические указания по заземлению нейтрали сетей 6-35 кВ
через резистор

Таблица Г.1 – Емкостные токи замыкания на землю кабелей с секторными жилами и поясной изоляцией

Сечение, мм2 Ток замыкания на землю, А/км
Кабели 6 кВ Кабели 10 кВ
16 0,37 0,52
25 0,46 0,62
35 0,52 0,69
50 0,59 0,77
70 0,71 0,90
95 0,82 1,00
120 0,89 1,10
150 1,10 1,30
185 1,20 1,40
240 1,30 1,60
300 1,50 1,80

Таблица Г.2 – Емкостные токи замыкания на землю кабелей с бумажной пропитанной изоляцией

Сечение, мм2 Ток замыкания на землю, А/км
Кабели 20 кВ Кабели 35 кВ
25 2,0
35 2,2
50 2,5
70 2,8 3,7
95 3,1 4,1
120 3,4 4,4
150 3,7 4,8
185 4,0 5,2

Таблица Г.3 – Емкостные
токи замыкания на землю кабелей с пластмассовой изоляцией

Сечение, мм2 Ток замыкания на землю, А/км
Кабели 6 кВ Кабели 10 кВ Кабели 35 кВ
25 0,55 1,90 3,30
35 0,60 2,10 3,60
50 0,65 2,30 3,90
70 0,70 2,60 4,50
95 0,75 2,90 4,80
120 0,85 3,20 5,40
150 0,9 3,40 5,70
185 1,00 3,80 6,30
240 1,00 4,50 6,90
300 5,00 7,50
400 5,60 8,10
Примечания:1) Три жилы кабелей 6кВ имеют общий металлический экран.2) Каждая жила кабелей 10-35 кВ имеет отдельный металлический экран.

Таблица Г.4 – Емкость кабелей с изоляцией из сшитого полиэтилена

Сечение, мм2 Ток замыкания на землю, А/км
Кабели 6 кВ Кабели 10 кВ Кабели 35 кВ
50 0,43 0,72 2,53
70 0,49 0,82 2,86
95 0,55 0,91 3,19
120 0,58 0,97 3,41
150 0,64 1,07 3,74
185 0,70 1,16 4,07
240 0,77 1,29 4,51
300 0,85 1,41 4,95
400 0,94 1,57 5,50
500 1,04 1,73 6,05
630 1,15 1,92 6,70
800 1,28 2,14 7,47

Литература:

  1. Справочник по электрическим установкам
    высокого напряжения/ Под ред. И.А. Баумштейна, С.А. Бажанова. – 3-е изд.,
    перераб. И доп. –М.: Энергоатомиздат, 1989.
  2. РД 34.20.179. Типовая инструкция по
    компенсации емкостного тока замыкания на землю в электрических сетях 6-35 кВ.
  3. СТП 09110.20.187-09. Методические
    указания по заземлению нейтрали сетей 6-35 кВ через резистор.
  4. ЗАО “Завод “Южкабель”. Силовые
    кабели среднего и высокого напряжения с изоляцией из сшитого полиэтилена.
  5. Кабели силовые с изоляцией из
    сшитого полиэтилена на напряжение 6–35 кВ Nexans.
  6. Библиотечка электротехника, вып.
    11(35). Шуин В.А, Гусенков А.В. Защиты от замыканий на землю в электрических
    сетях 6-10 кВ. –М.: НТФ «Энергопрогресс».

Что такое емкостный ток

Емкостный ток возникает как правило на линиях с большой протяженностью. В этом случае земля и проводники работают аналогично обкладкам конденсатора, способствуя появлению определенной емкости. Поскольку напряжение в ЛЭП обладает переменными характеристиками, это может послужить толчком к его появлению. В кабельных линиях, напряжением 6-10 киловольт, его значение может составить 8-10 ампер на 1 км протяженности.

В случае отключения линии, находящейся в ненагруженном состоянии, величина емкостного тока может достигнуть нескольких десятков и даже сотен ампер. В процессе отключения, когда наступает момент перехода тока через нулевое значение, напряжение на расходящихся контактах будет отсутствовать. Однако, в следующий момент вполне возможно образование электрической дуги.

Расчет емкостного тока сети

Для того чтобы уменьшить ток замыкания на землю, в сетях, напряжением от 6 до 35 киловольт, осуществляется компенсация емкостного тока. Это позволяет снизить скорость восстановления напряжения на поврежденной фазе после гашения дуги. Кроме того, снижаются перенапряжения в случае повторных зажиганий дуги. Компенсация выполняется с применением дугогасящих заземляющих реакторов, имеющих плавную или ступенчатую регулировку индуктивности.

Расчет емкостного тока сети

Настройка дугогасящих реакторов выполняется в соответствии с током компенсации, величина которого равна емкостному току замыкания на землю. При настройке допускается использование параметров излишней компенсации, когда индуктивная составляющая тока будет не более 5 ампер, а степень отклонения от основной настройки – 5%.

Выполнение настройки с недостаточной компенсацией допустимо лишь в том случае, когда мощность дугогасящего реактора является недостаточной. Степень расстройки в этом случае не должна превышать 5%. Главным условием такой настройки служит отсутствие напряжения смещения нейтрали, которое может возникнуть при несимметричных емкостях фаз электрической сети – при обрыве проводов, растяжке жил кабеля и т.д.

Для того чтобы заранее предупредить возникновение аварийных ситуаций и принять соответствующие меры, необходимо рассчитать емкостный ток на определенном участке. Существуют специальные методики, позволяющие получить точные результаты.

Индуктивное сопротивление проводов и кабелей

Для определения индуктивного сопротивления (обозначается Х) кабельной или воздушной линии определенной протяженности в километрах удобно пользоваться выражением:

Где: Х – индуктивное сопротивление одного километра провода или кабеля на фазу, Ом/км.

Х одного километра воздушной или кабельной линии можно определить по формуле:

Где: Dср – расстояние среднее между проводами или центрами жил кабелей, мм; d – диаметр токоведущей жилы кабеля или диаметр провода, мм; μт – относительная магнитная проницаемость материала провода;

Первый член правой части уравнения обусловлен внешним магнитным полем и называется внешним индуктивным сопротивлением Х / . Из этого выражения видно, что Х / зависит только от расстояния между проводами и их диаметра, а так как расстояние между проводами выбирается исходя из номинального напряжения линии, соответственно Х / будет расти с ростом номинального напряжения линии. Х / воздушных линий больше, чем кабельных. Это связано с тем, что токоведущие жилы кабеля располагаются друг к другу значительно ближе, чем провода воздушных линий.

Где: D1:2 расстояние между проводами.

Для одинарной трехфазной линии при расположении проводов по треугольнику:

При горизонтальном или вертикальном расположении проводов трехфазной линии в одной плоскости:

Увеличение сечения проводов линии ведет к незначительному уменьшению Х / .

Второй член уравнения для определения X обусловлен магнитным полем внутри проводника. Он выражает внутреннее индуктивное сопротивление Х // .

Таким образом выражение для Х можно представить в виде:

Для линий из немагнитными материалов μ = 1 внутреннее индуктивное сопротивление Х // по сравнению с внешним Х / составляет ничтожную величину, поэтому им очень часто пренебрегают.

В таком случае формула для определения Х примет вид:

Для практических расчетов индуктивные сопротивления кабелей и проводов определяют по соответствующим таблицам.

Популярные статьи  Почему выбивает вводной автоматический выключатель, а не групповой?

В случае приближенных расчетов можно считать для воздушных линий напряжением 6-10 кВ Х = 0,3 – 0,4 Ом/км, а для кабельных Х = 0,08 Ом/км.

Внутренне индуктивное сопротивление стальных проводов сильно отличается от Х // проводов из цветных металлов. Это вызвано тем, что Х // пропорционально магнитной проницаемости μr, которая сильно зависит от величины тока в проводе. Если для проводов из цветных металлов μr = 1, то для стальных проводов μr может достигать величины в 10 3 и даже выше.

Х // для линий прокладываемых стальными проводами пренебрегать нельзя. Как правило, данную величину берут из таблиц, составленных на основе экспериментальных данных.

Сопротивления r и Х // при некоторых значениях тока могут достигать максимальных значений, а затем с увеличением тока уменьшатся. Это явление объясняется магнитным насыщением стали.

Компенсационные меры защиты

В соответствии с положениями ПУЭ в нормальных условиях работы сети должны предприниматься специальные меры защиты от возможного пробоя на землю.

Для ограничения емкостных токов в нейтраль трансформатора вводится специальный дугогасящий реактор (смотрите рисунок 1, б). С его помощью удаётся снизить (компенсировать) ток однофазного замыкания на землю, возникающий сразу после аварии.

Практически установлено, что при наличии компенсатора воздушные и кабельные линии могут работать в критическом аварийном режиме довольно продолжительное время и вот почему.

Расчет емкостного тока сети

Как только протекающий в реакторе индуктивный ток Ip сравнивается по своей величине с противофазной емкостной составляющей Ic – наблюдается эффект компенсации, при котором Iр + Iс = 0 (явление резонанса токов).

Использование дугогасящего реактора оказывает определённое влияние на распределение потенциалов в линейных проводах и в нейтрали. В последней появляется напряжение смещения Ucм , вызванное асимметрией в цепи и приложенное к выводам реактора.

В резонансном режиме такое рассогласование приводит к искажению нормальной картины распределения потенциалов даже в отсутствии однофазного замыкания (ОЗЗ).

Искусственное предупреждение резонансных явлений может быть достигнуто путём преднамеренного рассогласования соответствующих цепей, в результате чего удаётся снизить Ucм и выровнять показания контрольных приборов.

Дополнительное замечание. Варьировать величину компенсационных токов допускается в пределах, при которых образовавшееся в случае аварии рассогласование не приводило бы к появлению Ucм более чем 0,7 Uф.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром. Также с этой задачей легко справится цифровой ваттметр.

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Как перевести амперы в ватты и обратно?

Как перевести амперы в киловаты?

Как рассчитать падение напряжения по длине кабеля в электрических сетях

Что такое коэффициент трансформации трансформатора?

Что такое диэлектрическая проницаемость

Сколько электроэнергии потребляют бытовые приборы, способы вычисления, таблица

Защита, реагирующая на наложенный ток.

Для повышения устойчивости функционирования защит от однофазных замыканий на землю, реагирующих на ток замыкания не промышленной частоты, была разработана защита, реагирующая на наложенный ток. Наложенный ток может быть частотой как выше промышленной, так и ниже. Для создания тока повышенной частоты возможно использование нелинейного сопротивления, включенного между нейтралью сети и землёй. Однако данное устройство значительно повышает стоимость таких защит и может снизить надёжность функционирования защиты. Также можно отметить тот факт, что значительная высокочастотная составляющая может присутствовать в токах присоединений и в нормальном режиме. Это в первую очередь относится к сетям, связанным с производствами, имеющими нелинейную нагрузку. В таких случаях описанный способ защиты непригоден. Кроме того, как показывают некоторые исследования, гармоники с частотой 100 Гц появляются почти в 2 раза чаще, чем, например, с частотой 25 Гц и амплитуды их намного больше.

К основным недостаткам защит, реагирующих на наложенный ток частотой ниже промышленной, можно отнести необходимость подключения в нейтрали сети специального устройства для создания контрольного тока, влияние на устойчивость функционирования защиты погрешностей ТТНП, возрастающих при уменьшении рабочей частоты, усложнение схемы первичной коммутации из-за необходимости подключения источника наложенного тока и трудности подключения источника вспомогательного тока при использовании в сети нескольких ДГР, установленных на разных объектах. Также не исключены сложности отстройки от естественных гармонических составляющих при внешних дуговых перемежающихся ОЗЗ, при которых спектр тока зависит от параметров сети и режима заземления её нейтрали, положения точки ОЗЗ в сети.

Защиты на централизованном принципе лишены недостатков индивидуальных защит, таких как ложные срабатывания, связанные с переходными процессами на неповрежденных линиях. В централизованных защитах в основном применяют сравнение амплитудных или действующих значений токов нулевой последовательности. Поврежденный фидер определяется на основе сравнения токов нулевой последовательности по всем присоединениям и выборе присоединения с максимальным током нулевой последовательности. Расчет этих значений может проводиться как в начальный момент времени, то есть, основываясь на переходных величинах замыкания, так и в установившемся режиме. Кроме того, возможно применение высших гармонических составляющих токов нулевой последовательности либо наложенного тока с частотой, отличной от промышленной. Для расширения области применения на подстанциях с большим числом присоединений, возможно введение в такие защиты дополнительной информации, которая позволяет произвести отстройку от действия в некоторых сложных режимах, например, получение информации о напряжении нулевой последовательности с другой секции шин подстанции может повысить чувствительность.

Синхронные и асинхронные электродвигатели

Собственный емкостной ток синхронных и асинхронных двигателей определяется по формуле 6.3 и выражеться в амперах:

где:

  • fном. – номинальная частота сети, Гц;
  • Сд – емкость фазы статора, Ф;
  • Uном. – номинальное напряжение электродвигателя, В.

Емкость фазы статора Сд принимается по данным завода-изготовителя. Если же данные значения отсутствуют, можно воспользоваться следующими приближенными формулами :

для неявнополюсных СД и АД с короткозамкнутым ротором:

где:

  • Sном. – номинальная полная мощность электродвигателя, МВА;
  • Uном. – номинальное напряжение электродвигателя, кВ.
  • для остальных электродвигателей:

где:

  • Uном. – номинальное напряжение электродвигателя, В;
  • nном. – номинальная частота вращения ротора, об/мин.
Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: