Что такое реактивное сопротивление трансформатора?

Содержание

Определение потерь в трансформаторе

Трансформатор является прибором, который призван преобразовывать электроэнергию сети. Эта установка имеет две или больше обмоток. В процессе своей работы трансформаторы могут преобразовать частоту и напряжение тока, а также количество фаз сети. В ходе выполнения заданных функций наблюдаются потери мощности в трансформаторе. Они влияют на исходную величину электричества, которую выдает на выходе прибор. Что собой представляют потери и КПД трансформатора, будет рассмотрено далее.

  • 1 Устройство
  • 2 Понятие потерь 2.1 Магнитные потери
  • 2.2 Электрические потери

3 Методика расчета
4 Формула расчета

  • 4.1 Расчет для трехобмоточных трансформаторов

5 Пример расчета
6 Измерение полезного действия

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60
ватт

Где:Р_2
– мощность на выходе трансформатора, нами задана 60 ватт
;

U
_2
— напряжение на выходе трансформатора, нами задано 36 вольт
;

I
_2
— ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт
обычно равно не более η = 0,8
.КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт
.

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1

, мощности потребляемой от сети 220
вольт,
зависит площадь поперечного сечения магнитопровода S
.

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 · √P_1.

Где:S
— площадь в квадратных сантиметрах,
P
_1 — мощность первичной сети в ваттах.

S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².

По значению S
определяется число витков w
на один вольт по формуле:

w = 50/S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50/10,4 = 4,8
витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 = 172.8 витков
,

округляем до 173 витка
.

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера
.

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,для медного провода,

принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I
.

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм
.

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА,
то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².

где
: d — диаметр провода
.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1
мм.

Площадь поперечного сечения провода диаметром 1,1
мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм²
.

Округлим до 1,0
мм².

Изтаблицывыбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм
. и площадью по0,5 мм²
.

Или два провода: — первый диаметром 1,0 мм
. и площадью сечения 0,79 мм²
,
— второй диаметром 0,5 мм
. и площадью сечения 0,196 мм²
.что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

Получается как бы один провод с суммарным поперечным сечением двух проводов.

Смотрите статьи:— «Как намотать трансформатор на Ш-образном сердечнике».— «Как изготовить каркас для Ш — образного сердечника».

Электрический аппарат — трансформатор используется для преобразования поступающего переменного напряжения в другое — исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.

Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.

Измерение полезного действия

При расчете потерь определяется также показатель полезного действия. Он показывает соотношение мощности активного типа на входе и выходе. Этот показатель рассчитывают для замкнутой системы по следующей формуле:

КПД = М1/М2, где М1 и М2 – активная мощность трансформатора, определяемая измерением на входном и исходящем контуре.

Выходной показатель рассчитывается путем умножения номинальной мощности установки на коэффициент мощности (косинус угла j в квадрате). Его учитывают в приведенной выше формуле.

В трансформаторах 630 кВА, 1000 кВА и прочих мощных устройствах показатель КПД может составлять 0,98 или даже 0,99. Он показывает, насколько эффективно работает агрегат. Чем выше КПД, тем экономичнее расходуется электроэнергия. В этом случае затраты электроэнергии при работе оборудования будут минимальными.

Рассмотрев методику расчета потерь мощности трансформатора, короткого замыкания и холостого хода, можно определить экономичность работы аппаратуры, а также ее КПД. Методика расчета предполагает применять особый калькулятор или производить расчет в специальной компьютерной программе.

Источник

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Предварительные расчеты

19

ФГБОУ ВПО

НАЦИОНАЛЬНЫЙ
ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

МОСКОВСКИЙ
ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

КАФЕДРА ЭЛЕКТРИЧЕСКИХ
И ЭЛЕКТРОННЫХ АППАРАТОВ

«Низковольтное
комплектное устройство (НКУ)»

Расчетно-пояснительная записка

к курсовому проекту по курсу:

«Электрические и электронные аппараты»

Выполнил: Панюшин В.В.

Группа: ЭЛ-13-11

Вариант: №16

Консультант: Калашникова А.В.

Популярные статьи  Как оценивается опасность поражения человека током электроустановки в электросетях различной конфигурации

Москва 2013

ИСХОДНЫЕ ДАННЫЕ

Исходные данные приведены в таблице
1.1, 1.2.

Таблица 1.1

Параметры
питающего трансформатора, соединительных
кабелей и нагрузки

Параметры

Обозначение

Размерность

Значение

Мощность
питающего трансформатора

S

кВА

160

Номинальное
линейное напряжение

Uном.л

кВ

0.4

Напряжение
короткого замыкания

Uк

%

4.5

Потери
в меди

PСu

кВт

3.1

Длины соединительных
кабелей

l

м

50

l1

м

20

l2
l
7

м

25

Номер
двигателя

29

Номер
варианта схемы управления АД

2

Номер
варианта схемы нагрузки

2

Номинальные
токи нагрузки

I2-I4

А

10

I5-I7

А

8

Таблица 1.2

Параметры
асинхронного двигателя типа А250
S6

Параметры

Обозначение

Размерность

Значение

Номинальная
мощность двигателя

Pном

кВт

45

КПД двигателя

η

%

92.5

Коэффициент
мощности двигателя

cosφ

0.81

Кратность
пускового тока

kI

6

Проведя предварительные расчёты,
выяснилось, что Iном.тр.<Iп.дв.Поэтому, трансформатор берём: ТМГ-400 (S= 400 кВА,Pcu=5.9).
Тогда, рассчитаем параметры трансформатора.

Полное сопротивление трансформатора
zтр:

Что такое реактивное сопротивление трансформатора?, (1.1)

где Uном.л
номинальное напряжение вторичной цепи
трансформатора, кВ;

Uк% – напряжение
короткого замыкания, %;S– полная мощность трансформатора, кВА.

Что такое реактивное сопротивление трансформатора?

Номинальный ток трансформатора Iном.тр:

Что такое реактивное сопротивление трансформатора?, (1.2)

Активное сопротивление трансформатора
rтр:

Что такое реактивное сопротивление трансформатора?, (1.3)

где PCuпотери в меди, кВт;

Полное сопротивление трансформатора
zтртакже можно
рассчитать по следующей формуле:

(1.4)

Из формулы (1.4) выразим реактивное
сопротивление трансформатора xтр:

(1.5)

Ток
короткого замыкания (КЗ) на зажимах
трансформатора Iкз.тр:

Что такое реактивное сопротивление трансформатора?(1.6)

Номинальный ток двигателя:

(1.7)

где Pном.дв
номинальная мощность двигателя, кВт; η
– коэффициент полезного действия при
номинальном моменте на валу двигателя,
%;cosφ– коэффициент
мощности двигателя.

Пусковой ток двигателя:

(1.8)

где kIкратность пускового тока
двигателя.

Ударный пусковой ток двигателя
(амплитудное значение):

(1.9)

Выбираем
кабели с медными жилами с резиновой
изоляцией в поливинилхлоридной оболочке
(табл.1.3.10 ПУЭ). Параметры выбранных
кабелей приведены в таблице 1.3.

Таблица 1.3

Параметры кабелей

Кабели

Параметры

Вводной

PEN1

К
двигателю

PEN2

К нагрузке

(2-4)

N

PE

К нагрузке

(5-7)

N

PE

Длина
кабеля l,
м

50

50

20

20

25

25

25

25

25

25

Номинальный
ток нагрузки, Iном,
А

105

105

87

87

10

10

10

8

8

8

Длительно
допустимый ток кабеля

Iдоп,
А

145

145

120

120

30

30

30

30

30

30

Материал

Cu

Cu

Cu

Cu

Cu

Cu

Cu

Cu

Cu

Cu

Количество
жил

3

1

3

1

1

1

1

1

1

1

Сечение

q,
мм2

50

50

35

35

2,5

2,5

2,5

2,5

2,5

2,5

Удельное

активное

сопротивление
rуд,
мОм

0.488

0.488

0.660

0.660

9.18

9.18

9.18

9.18

9.18

9.18

Удельное

реактивное

сопротивление
xуд,
мОм

0.073

0.073

0.074

0.074

0.097

0.097

0.097

0.097

0.097

0.097

Активное
сопротивление кабеля rк,
мОм

24.4

24.4

13.2

13.2

229.5

229.5

229.5

229.5

229.5

229.5

Реактивное
сопротивление кабеля xк,
мОм

3.6

3.6

1.5

1.5

2.4

22.4

22.4

22.4

22.4

22.4

Длительно допустимый ток кабеля находим,
как Iдд =In∙1.3.
По полученному значению из таблицы ПУЭ
подбираем наиболее близкое значение,
округляя в большую сторону. Это значение
вписывает в таблицу 1.3.

Эффективное процентное сопротивление

Эффективный импеданс – это относительный импеданс реактора или трансформатора в реальных условиях эксплуатации. Поскольку нагрузки меньшего (кВА) имеют более высокий импеданс и, следовательно, потребляют меньший ток, чем большие (кВА) нагрузки, внутренние омы реактора или трансформатора представляют меньший процент импеданса нагрузки для небольшой нагрузки (кВА), чем для большой нагрузки.

Значение в омах приведет к снижению падения напряжения при протекании менее реактора или тока трансформатора. Если нагрузка составляет только половину номинального тока, то падение напряжения на импедансе будет на одну половину от номинального падения напряжения.

Примеры расчетов для трехфазного трансформатора мощностью 500 кВА, 4160: 480, 60 Гц, импеданса 6%:

Реактивное сопротивление трансформатора X t = (кВ 2 / МВА) x% Z / 100 = (0, 48 2 / 0, 5) x 0, 06 = 0, 027648 Ом Номинальный вторичный ток = 500 000 / (480 x 1, 732) = 601, 4 А Фактический ток нагрузки = 300 А Падение напряжения при фактической нагрузке = 300 x 1.732 x 0.027648 = 14.36 вольт (14.36 / 480 = 0.0299 или 3% от 480 вольт ) Эффективный процентный импеданс = 6% x (300 / 601, 4) = 2, 99%

Сопротивление трансформатора (VIDEO)

Не могу посмотреть это видео? Нажмите здесь, чтобы посмотреть его на Youtube.

Ресурс: Курс ввода подстанции – Трансформатор сухого типа

Мощность в цепи с реактивными радиоэлементами

При подключении таких элементов в цепь в четных четвертях периода мощность будет иметь отрицательное значение (в это время компонент направляет накопленную энергию в источник напряжения). В итоге использование энергии элементом за весь цикл оказывается равным нулю. Это означает, что на нем не происходит выделения энергии, так что на электросхемах такие детали изображаются холодными. На деле положение вещей может быть немного иным (это зависит от параметров конкретного элемента), бывает, что небольшие тепловые потери на конденсаторе или соленоиде все-таки имеют место. Но они не будут значительными, измеряющимися в кв.

Определение активного сопротивления проводов

Активное сопротивлении проводов проще всего определять по справочным данным, составленным на основании ГОСТ 839-80 – «Провода неизолированные для воздушных линий электропередач» таблицы 1 – 4. Данные таблицы вы сможете найти непосредственно в самом ГОСТ, приведу лишь не которые.

Что такое реактивное сопротивление трансформатора?

Пользоваться всеми известными формулами по определению активного сопротивления — не рекомендуется ,связано это с тем, что действительное сечение отличается от номинального сечения, провода выпускались в разное время, по разным ГОСТ и ТУ и величины удельной проводимости (ρ) и удельного сопротивления (γ) у них разные:

где:

  • γ – значение удельной проводимости для медных и алюминиевых проводов при температуре 20 °С принимается: для медных проводов – 53 м/Ом*мм2; для алюминиевых проводов – 31,7 м/Ом*мм2;
  • s – номинальное сечение провода(кабеля),мм2;
  • l – длина линии, м;
  • ρ – значение удельного сопротивления принимается: для медных проводов — 0,017-0,018 Ом*мм2/м; для алюминиевых проводов – 0,026 — 0,028 Ом*мм2/м, см. таблицу 1.14 .

Что такое реактивное сопротивление трансформатора?

Активные сопротивления стальных проводов математическому расчету не поддаются. Поэтому рекомендую для определения активного сопротивления использовать приложения П23 – П25 .

Что такое реактивное сопротивление трансформатора?

Какое сопротивление называется реактивным, какое активным

Активное электросопротивление — это важный параметр электрической сети, который обуславливает превращение электрической энергии, поступающей в участок электроцепи или в отдельный элетроэлемент в любой другой тип энергии: химическую, механическую, тепловую, электромагнитную. Процесс превращения при этом считаю необратимым.

Что такое реактивное сопротивление трансформатора?
Типы рассматриваемой величины и формулы ее расчета

Реактивное сопротивление по-другому называется реактансом и представляет собой сопротивляемость элементов электроцепи, которые вызывается измерением силы электротока или напряжения из-за имеющейся емкости или индуктивности этого элемента. При реактансе происходит обменный процесс между отдельным компонентом сети и источником энергии. Часто это понятие относят к простому электрическому сопротивлению, однако оно отличается некоторыми моментами.

Что такое реактивное сопротивление трансформатора?
Течение переменного электротока не зависит от типа сопротивляемости элементов и всей сети

Различия между активным и реактивным сопротивлением

Разница между активным и реактивным сопротивлением состоит в том, что при прохождении электротока по компонентам цепи, несущим активную нагрузку, имеют место мощностные потери в виде выделения тепла, которое не может быть снова превращено в электрическую энергию. В качестве наглядного примера можно привести конфорку электроплиты, выделяющую тепловую энергию. Такими свойствами обладают и осветительные устройства, электрические двигатели, различные кабели. Фазы проходящих через такие компоненты напряжения и электротока будут совпадать.

Внутреннее сопротивление — формула

Реактивные нагрузки отличаются наличием емкостных свойств либо способностью к индукции. В первом случае величина рассматриваемого сопротивления зависит от емкости, во втором – от электродвижущей силы самоиндукции.

Важно! Величина, в противоположность активной, может иметь плюсовой и минусовой знаки. Это зависит от того, в какую сторону идет фазовый сдвиг

Популярные статьи  Общий перечень марок кабельно-проводниковой продукции по группам

При опережении электрическим током напряжения будет иметь место отрицательный показатель, в обратном случае – положительный.

Формулы и измерение

Формулы для расчета индуктивности катушек довольно сложны и имеет различный вид для различных типов исполнения обмоток:

  • линейный проводник;
  • одновитковая катушка;
  • плоская катушка;
  • соленоидальная обмотка;
  • тороидальная форма.

Наибольшие сложности возникают при расчетах многовитковых многослойных катушек, то есть тех, которые составляют обмотку трансформаторов.

Что такое реактивное сопротивление трансформатора?

Формулы  для расчета индуктивности трансформатора основаны на расчетах соленоида:

L=µµN2S/l, где

µ0 – магнитная постоянная;

µ – магнитная проницаемость сердечника;

N – количество витков;

S – площадь одного витка;

l – длина обмотки.

Для измерения индуктивности существует несколько методик и приборов, созданных на их основе. В большинстве случаев измерение производится путем вычислений индуктивного сопротивления катушки при подаче образцового напряжения заданной частоты и измеренного значения тока через обмотку.

В специализированных приборах вычисления производятся автоматически, и пользователь только считывает показания шкалы прибора, выраженные в единицах индуктивности – Гн, мГн или мкГн.

Что такое реактивное сопротивление трансформатора?

Плотность тока можно выбрать по таблице

Конструкция трансформатора Плотность тока (а/мм2) при мощности трансформатора (Вт)
5-10 10-50 50-150 150-300 300-1000
Однокаркасная 3,0-4,0 2,5-3,0 2,0-2,5 1,7-2,0 1,4-1,7
Двухкаркасная 3,5-4,0 2,7-3,5 2,4-2,7 2,0-2,5 1,7-2,3
Кольцевая 4,5-5,0 4,0-4,5 3,5-4,5 3,0-3,5 2,5-3,0

Пример:

Ток, протекающий через катушки «III» и «IV» – 1,2 Ампера.

А плотность тока я выбрал – 2,5 А/ мм².

1,13√ (1,2 / 2,5) = 0,78 мм

У меня нет провода диаметром 0,78 мм, но зато есть провод диаметром 1,0мм. Поэтому, я на всякий случай посчитаю, хватит ли мне места для этих катушек.

Что такое реактивное сопротивление трансформатора?

  1. Количество витков в одном слое.
  2. Количество слоёв.

Ширина моего не секционированного каркаса 40мм.

Мне нужно намотать 124 витка проводом 1,0 мм, у которого диаметр с изоляцией равен 1,08 мм. Таких обмоток требуется две.

124 * 1,08 * 1,1 : 40 ≈ 3,68 слоя

1,1 – коэффициент. На практике, при расчёте заполнения нужно прибавить 10 – 20% к полученному результату. Я буду мотать аккуратно, виток к витку, поэтому добавил 10%.

Получилось 4 слоя провода диаметром 1,08мм. Хотя, последний, четвёртый слой заполнен только на несколько процентов.

Определяем толщину обмотки:

1,08 * 4 ≈ 4,5 мм

У меня в распоряжении 9мм глубины каркаса, а значит, обмотка влезет и ещё останется свободное место.

Ток катушки «II» вряд ли будет больше чем – 100мА.

1,13√ (0,1 / 2,5) = 0,23 мм

Диметр провода катушки «II» – 0,23мм.

Это малюсенькая по заполнению окна обмоточка и её можно даже не принимать в расчёт, когда остаётся так много свободного места.

Конечно, на практике у радиолюбителя выбор проводов невелик. Если нет провода подходящего сечения, то можно намотать обмотку сразу несколькими проводами меньшего диаметра. Только, чтобы не возникло перетоков, мотать нужно одновременно двумя, тремя или даже четырьмя проводами. Перетоки, возникают тогда, когда есть даже незначительные отклонения в длине обмоток соединённых параллельно. При этом, из-за разности напряжений, возникает ток, который греет обмотки и создаёт лишние потери.

Перед намоткой в несколько проводов, сначала нужно посчитать длину провода обмотки, а затем разрезать провод на требуемые куски.

Длина проводов будет равна:

L – длина провода,

p – периметр каркаса в середине намотки,

ω – количество витков,

1,2* – коэффициент.

Толстый провод необходимо мотать виток к витку, а более тонкие провода можно намотать и в навал. Главное, чтобы обмотка поместилась в окно магнитопровода.

Если намотка производится аккуратно без повреждения изоляции, то никаких прокладок между слоями можно не применять, так как, при постройке УНЧ средней мощности, большие напряжения не используются. Изоляция же обмоточного провода рассчитана на напряжение в сотни вольт. Чем толще провод, тем выше пробивное напряжение изоляции провода. У тонкого провода пробивное напряжение изоляции около 400 Вольт, а у толстого может достигать 2000 Вольт.

Закрепить конец провода можно обычными нитками.

Если при удалении вторичной обмотки повредилась межобмоточная изоляция, защищающая первичную обмотку, то её нужно обязательно восстановить. Тут можно применить плотную бумагу или тонкий картон. Не рекомендуется использовать всякие синтетические материалы вроде скотча, изоленты и им подобные.

Если катушка разделена на секции для первичных и вторичных обмоток трансформатора, то тогда и вовсе можно обойтись без изоляционных прокладок.

Что такое реактивное сопротивление трансформатора?

Видео: Расчет сечения провода в силовом трансформаторе. Excel

Пример использования Excel в качестве универсального калькулятора для расчета диаметра провода в импульсном трансформаторе. Произведен расчет зависимости максимального тока от сечения проводника.

Как определить мощность трансформатора?

Чаще всего для мощности трансформатора Р используется выражение, полученное при условии следующих упрощений:

— намагничивающий ток не учитывают, I = 0, I1 = I;

— плотность тока первичной и вторичной обмоток считают равными, j1 = j2 = j;

— окно сердечника делится пополам между обмотками, S1 = S2 = Sок/2.

Таким образом мощность трансформатора может быть определена следующими выражениями

где kф – коэффициент формы кривой напряжения,

f – частота переменного напряжения, Гц,

w – число витков в обмотке,

kC – коэффициент заполнения магнитным материалом сердечника,

SC – сечение сердечника, см2,

В – магнитная индукция в сердечнике (амплитудное значение), Тл,

j – плотность тока в обмотке, А/мм2,

q – сечение проводника в обмотке, мм2.

Данное выражение можно несколько упростить

где kОК – коэффициент заполнения окна сердечника,

SOK – площадь окна сердечника, см2.

Данные выражения показывают, что при постоянных kC, kОК, j и В мощность трансформатора пропорциональна частоте f и произведению площадей сердечника и окна SCSOK. Следует отметить, что коэффициенты j и В не постоянны, а сложным образом зависят от мощности трансформатора. Однако видно, что при тех же размерах трансформатора SC и SOK при увеличении частоты мощность трансформатора можно существенно увеличить. Или же другими словами трансформатор той же мощности при повышенной частоте имеет существенно меньшие размеры, чем трансформатор промышленной частоты (50 Гц). Это основная причина широкого распространения трансформаторов повышенной и высокой частоты.

Чаще всего для трансформаторов, ε = 1, однако это условие не является оптимальным. Однако если считать, что ε ≠ 1, то вышеописанные выражения теряют силу, потому что окно сердечника распределяется не пополам и не в отношении n, а в зависимости от величины ε. В результате необходимо вводить дополнительные коэффициенты заполнения окна первичной и вторичной обмоток kОК1 и kОК2. В результате данных условий получаем наиболее общее выражение для электромагнитной мощности трансформатора

где j2 – плотность тока вторичной обмотки,

S2 – площадь окна занятая только вторичной обмотки,

kОК2 – коэффициент заполнения площади S2.

Площадь S2 определяется следующим выражением

где I1 – относительный ток первичной обмотки,

I – приведённый вторичный ток,

Р1 – полная мощность, потребляемая трансформатором от сети,

Р – электромагнитная мощность.

Тогда получим наиболее строгое выражение для электромагнитной мощности

Что такое реактивное сопротивление трансформатора?

Разница значений kОК1 и kОК2 обычно незначительна и не дает больших отличий, поэтому можно принять kОК1 = kОК2 = kОК, k21 = 1.

Тогда площадь окна занятая вторичной обмоткой составит

В соответствие с данным выражением для обычных условий получим следующее выражение для электромагнитной мощности трансформатора

Что такое реактивное сопротивление трансформатора?

Упрощенный расчет 220/36 В

Стандартный трансформатор с 220/36 В, представлен тремя основными компонентами в виде первичной и вторичной обмотки, а также магнитопровода. Упрощенный расчет силового трансформатора включает в себя определение сечения сердечника, количества обмоточных витков и диаметра кабеля. Исходные данные для простейшего расчета представлены напряжением на первичной U1 и на вторичной обмотке – U2, а также током на вторичной обмотке или I2.

В результате упрощенного расчета устанавливается зависимость между сечением сердечника Sсм², возведенным в квадрат и общей трансформаторной мощностью, измеряемой в Вт. Например, прибором с сердечником, имеющим сечение 6,0 см², легко «перерабатывается» мощность в 36 Вт.

Популярные статьи  Техническое обслуживание воздушных линий электропередачи

При расчете используются заведомо известные параметры в виде мощности и напряжения на вторичной цепи, что позволяет вычислить токовые показатели первичной цепи. Одним из важных параметров является КПД, не превышающий у стандартных трансформаторов 0,8 единиц или 80%.

Сами занимаетесь установкой электрооборудования? Схема подключения трансформатора представлена на нашем сайте.

Подозреваете, что трансформатор неисправен? О том, как проверить его мультиметром, вы можете почитать тут.

Чем отличается трансформатор от автотрансформатора, вы узнаете из этой темы.

Показатели полной или полезной мощности многообмоточных трансформаторов, являются суммой мощностей на всех вторичных обмотках прибора. Знание достаточно простых формул позволяет не только легко произвести расчёт мощности прибора, но также самостоятельно изготовить надежный и долговечный трансформатор, функционирующий в оптимальном режиме.

От каких факторов зависит сопротивление

Изменение силы тока создает электромагнитное поле переменной интенсивности. Результатом его воздействия на проводник является противодействие происходящему изменению тока.

Это противодействие называется реактивным сопротивлением. Существуют две его разновидности: индуктивная и емкостная. Первая создается при наличии в схеме индуктивного элемента, вторая — конденсатора.

В ситуации, когда в цепи присутствует катушка, ее реакция усиливается по мере увеличения частоты.

Цепь, в которой возникает индукция

В случае, когда ее индуктивность уменьшается, то противодействующая сила также становится меньше. При увеличении она возрастает.

Индуктивное сопротивление существенно связано с тем, какую форму принимает проводник. Оно имеется также и у отдельного провода, лежащего прямо. Однако если рядом будет еще один, то он будет оказывать воздействие дополнительно, что повлияет на рассматриваемую величину.

Вам это будет интересно Все об блуждающих токах

Рассматриваемую характеристику отдельного провода можно определять в зависимости от его толщины, но оно никак не связано с его сечением.

Принцип действия электродвижущей силы

Формула расчета реактивного сопротивления

В общем случае для деталей катушечного типа применяются выражения:

X = L*w = 2* π*f*L.

Для конденсаторов применяют формулы:

X = 1/(w*C)= 1/(2* π*f*C).

Для конкретного элемента, нужные параметры которого известны, величина может быть вычислена с использованием онлайн калькулятора. В форму потребуется ввести нужные данные и нажать на кнопку, инициирующую расчеты.

Умение рассчитывать данную составляющую сопротивляемости поможет узнать величину тепловых потерь на используемых нагрузках. При параллельном подсоединении конденсатора с подходящей емкостью можно решить проблему энергетических потерь на индуктивных нагрузках.

Импеданс элемента

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе.

Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние. Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X < 0, в элементе проявляется ёмкостное сопротивление.

Будет интересно Как обозначаются конденсаторы на схеме?

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное – с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.

Импеданс элемента.

Емкостное реактивное сопротивление [ править ]

Конденсатор состоит из двух проводников, разделенных изолятором , также известным как диэлектрик .

Емкостное реактивное сопротивление — это противодействие изменению напряжения на элементе. Емкостное реактивное является обратно пропорциональной к сигналу частоты (или угловой частоты & omega ; ) и емкости . ИксC{\displaystyle \scriptstyle {X_{C}}} f{\displaystyle \scriptstyle {f}} C{\displaystyle \scriptstyle {C}}

В литературе есть два варианта определения реактивного сопротивления конденсатора. Один из них — использовать единообразное понятие реактивного сопротивления как мнимой части импеданса, и в этом случае реактивное сопротивление конденсатора является отрицательным числом,

XC=−1ωC=−12πfC{\displaystyle X_{C}=-{\frac {1}{\omega C}}=-{\frac {1}{2\pi fC}}}.

Другой вариант — определить емкостное реактивное сопротивление как положительное число,

XC=1ωC=12πfC{\displaystyle X_{C}={\frac {1}{\omega C}}={\frac {1}{2\pi fC}}}

Однако в этом случае нужно помнить , чтобы добавить отрицательный знак для импеданса конденсатора, то есть .
Zc=−jXc{\displaystyle Z_{c}=-jX_{c}}

На низких частотах конденсатор представляет собой разомкнутую цепь, поэтому в диэлектрике не течет ток .

Постоянное напряжение , подаваемое через конденсатор вызывает положительный заряд накапливаться на одной стороне и отрицательный заряде накапливаться на другой стороне; электрическое поле за счет накопленного заряда является источником оппозиции к току. Когда потенциал, связанный с зарядом, точно уравновешивает приложенное напряжение, ток стремится к нулю.

Управляемый источником переменного тока (идеальный источник переменного тока), конденсатор будет накапливать только ограниченное количество заряда, прежде чем разность потенциалов изменит полярность и заряд вернется в источник. Чем выше частота, тем меньше заряда будет накапливаться и тем меньше будет сопротивление току.

Как рассчитать емкостное реактивное сопротивление

Рассмотрим пример расчета емкостного реактивного сопротивления: предположим, что конденсатор 6 мкФ подключен к розетке переменного тока с напряжением 40 В и частотой F 60 Гц.

Для определения емкостного реактивного сопротивления используется определение, данное в начале. Угловая частота ω определяется как:

ω = 2πf = 2π x 60 Гц = 377 с-1

Затем этот результат подставляется в определение:

ИксC = 1 / ωC = 1 / (377 с-1х 6 х10 -6 F) = 442,1 Ом

Теперь посмотрим на амплитуду тока, циркулирующего в цепи. Поскольку источник предлагает напряжение амплитудой VC = 40 В, мы используем соотношение между емкостным реактивным сопротивлением, током и напряжением для вычисления амплитуды тока или максимального тока:

яC = VC / ИКСC = 40 В / 442,1 Ом = 0,09047 А = 90,5 м А.

Если частота становится очень большой, емкостное реактивное сопротивление становится небольшим, но если частота становится равной 0 и у нас есть постоянный ток, реактивное сопротивление стремится к бесконечности.

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента – резистора, который, как говорят, обладает активным сопротивлением. Еще иногда его называют омическим. Как нам говорит вики-словарь, “активный – это деятельный, энергичный, проявляющий инициативу”. Активист готов всегда рвать и метать даже ночью. Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: