Силовые трансформаторы — устройство и принцип действия

Устройство и принцип работы однофазного двухобмоточного трансформатора

Назначение, область применения и классификация трансформаторов

Трансформеры.

Трансформатор – это электромагнитное устройство, используемое для преобразования электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения без изменения частоты.

Необходимость преобразования, то есть увеличения и уменьшения переменного напряжения, вызвана необходимостью передачи электрической энергии на большие расстояния. Чем выше значение передаваемого напряжения, тем меньше ток при той же мощности генератора. Следовательно, для передачи энергии потребуются провода меньшего сечения, что приведет к экономии цветных металлов, снижению веса и стоимости линий электропередачи (ЛЭП). Кроме того, с уменьшением тока потери мощности в линиях передачи уменьшаются ∆P = I2Rl.

По применению трансформаторы можно разделить на следующие типы:

1. Силовые трансформаторы, используемые в сетях передачи и распределения.

2. Автотрансформаторы с постепенной регулировкой выходного напряжения и используемые для его изменения (регулирования).

3. Измерительные трансформаторы, используемые как элементы измерительных приборов.

4. Трансформаторы специального назначения (печь, пайка, пик, изоляция и т.д.)

Используемые в настоящее время изоляционные материалы позволяют повысить напряжение в ЛЭП до 1250 кВ.

Трансформатор состоит из ферромагнитного (стального) сердечника (ФМС) и двух обмоток: первичной с числом витков W1, на которую подается напряжение источника U1, и вторичной – с числом витков W2, на клеммах которых напряжение U2 Сердечник трансформатора собирается из отдельных листов электротехнической стали (толщиной 0,3-0,5 мм), изолированных друг от друга для уменьшения потерь на вихревые токи.

Работа трансформатора основана на принципе взаимной индукции. При включении первичной обмотки W1 переменным напряжением U1 в ней появится ток I0, который, протекая по виткам W1, вызовет появление магнитного потока первичной обмотки, состоящей из основных или, по-другому, рабочий поток Ф, замыкающийся по сердечнику, и поток дисперсии Фδ1, замыкающийся в воздухе (рис. 4.3.). Электричество передается от первичного к вторичному через рабочий процесс.

Переменный синусоидальный рабочий магнитный поток, основанный на законе электромагнитной индукции, индуцирует в первичной обмотке ЭДС самоиндукции E1, а во вторичной обмотке – ЭДС взаимной индукции E2, которая создает напряжение U2 на выводах ‘ вторичная обмотка.

Если к вторичной обмотке трансформатора подключить нагрузку Zн (рис. 4.4.), В ней появится ток I2, который, протекая по виткам W2, вызовет появление магнитного потока во вторичной обмотке. Этот поток состоит из потока Ф2, закрытого в активной зоне, и вытекающего потока Фδ2, закрытого в воздухе.

Вторичный поток F2, согласно правилу Ленца, всегда направлен навстречу потоку первичной обмотки и стремится его уменьшить. Уменьшение расхода Ф приведет к уменьшению ЭДС E1. В результате разница между напряжением U1 и ЭДС E1 увеличится, что приведет к увеличению тока обмотки I0 до тока I1, который компенсирует магнитный поток Ф2 (рисунок 4.4). Таким образом, общий рабочий магнитный поток F1 – F2 останется неизменным и примерно равен начальному потоку F, приложенному к обеим обмоткам трансформатора.

Переменные потоки магнитной дисперсии первичной и вторичной обмоток Фδ1 и 2 связаны с одной из обмоток и наводят в них соответствующие ЭДС дисперсии Еδ1 и 2.

Разновидности

Производство конструкций силовых трансформаторов предполагает применение различных технологий. В процессе создания представленной аппаратуры применяются разные диэлектрические компоненты. Определенные части оборудования способствуют охлаждению и обеспечивают электрическую защиту.

Для маломощных разновидностей применяется диэлектрический компаунд или специальная бумага, электротехническое лаковое покрытие. Средние и мощные агрегаты имеют в своем составе такие основные части, как масло, элегаз. Производство подобного оборудования предполагает выполнять особую изоляцию обмоток.

Помимо вышеприведенной классификации выделяют еще несколько основных категорий объектов:

  • Количество фаз. Бывает трёхфазный и однофазный тип приборов.
  • Тип исполнения. Применяются масляные, сухие и приборы с жидким диэлектрическим веществом.
  • Климатическое исполнение. Наружные и внутренние установки.
  • Число обмоток. Встречаются конструкции с двумя и более катушками.
  • Предназначение. Для понижения или повышения напряжения.
  • Возможность регулировки напряжения. Применяются аппараты с регулировкой и без нее.

Производство подобной аппаратуры позволяет создавать установки мощностью от 4 кВА до 200 тыс. кВА (и выше). При этом достигается уровень напряжения на обмотках более 330 кВ.

Всего существует девять групп оборудования. В первую из них входят приборы с напряжением не выше 35 кВ и мощностью 4-100 кВА. К восьмой отнесены аппараты с мощностью выше 200 тыс. кВА и напряжением 35-330 кВ. Существуют и более мощное оборудование. Оно относится к девятой категории.

Однофазный трансформатор. Принципы работы. Основные параметры

11>

Устройство, состоящее из двух или нескольких индуктивно связанных катушек, называется трансформатором.

Трансформатор — это электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения. Наибольшее распространение получили однофазные и трехфазные трансформаторы.

Принцип действия трансформатора основан на явлении взаимной индукции. Простейший однофазный трансформатор состоит из двух катушек, расположенных на ферромагнитном сердечнике. (рис. 3.3.1)

рис. 3.3.1

Обмотка, к которой подключен источник энергии, называется первичной, а обмотка, к которой подключается нагрузка, называется вторичной.

При подключении первичной катушки к источнику переменного тока по ней потечет ток I1, который создает магнитный поток ф. Часть этого потока пересекает витки вторичной катушки, индуцируя в ней ЭДС взаимной индукции. Так как вторичная катушка замкнута на нагрузку, то по вторичной цепи потечет ток I2.

Таким образом, энергия от источника за счет магнитной связи между катушками передается в нагрузку.

Основными параметрами трансформатора являются: коэффициент трансформации, коэффициент полезного действия и мощность потерь.

Коэффициентом трансформации называется отношение количества витков первичной обмотки к количеству витков вторичной обмотки.

Если , то трансформатор называется понижающим (U1 U2), а если n 1 — то повышающим.

U2 — напряжение на первичной обмотке;

U2 — напряжение на вторичной обмотке;

W1 – число витков первичной катушки;

W2 — число витков вторичной катушки

Коэффициент полезного действия (КПД) называется отношение полезной мощности, выделяемой в нагрузке, к затраченной мощности, потребляемой от источника, выраженное в процентах.

Р1 – полезная мощность, выделяемая в нагрузке;

Р2 – затраченная мощность, потребляемая от источника;

Рсм = Рчистер + Рвихр.токи

Рм1 – мощность тепловых потерь в первичной катушке;

Рм2 — мощность потерь во вторичной катушке;

Рсм – мощность потерь в сердечнике, обусловленная потерями на гистерезис и вихревые токи.

Общие потери – это разность мощностей источника и потребителя энергии.

в понижающем трансформаторе

в повышающем трансформаторе

При расчете трансформаторов и аппаратуры с их использованием применяют схему замещения приведенного «трансформатора», в которой элементы электрической схемы учитывают физические процессы, происходящие в реальном трансформаторе.

Вопросы для самопроверки

1. Что называется трансформатором?

2. На чем основан принцип действия трансформатора?

3. Приведите схему однофазного трансформатора?

4. Что называется коэффициентом трансформации?

5. Какой трансформатор называется понижающим, а какой – повышающим?

6. Как определяется КПД трансформатора?

7. Из чего складываются потери трансформатора?

Тема №2: Электрические машины

Устройство и принцип действия машин постоянного тока.

Машина постоянного тока состоит из двух основных частей: подвижной и неподвижной. Неподвижная часть — индуктор представляет собой электромагнит, имеющий одну или несколько пар полюсов. Он состоит из станины, полюсов и обмоток возбуждения, расположенных на полюсах. Под действием постоянного тока, протекающего по обмоткам возбуждения, полюса намагничиваются. Таким образом, создается магнитный поток машины.

Вращающаяся часть машины — якорь состоит из вала, сердечника и обмотки якоря, соединенной с коллектором. Якорная обмотка через коллекторные пластины и прилегающие к ним контактные щетки соединяется с внешней электрической цепью.

Когда якорь генератора вращается каким-либо двигателем, в обмотке якоря, пересекающей магнитный поток полюсов, индуктируется э.д.с. Начальный ток возбуждения в параллельной обмотке возникает под действием небольшой э.д.с., которая индуктируется за счет остаточного магнитного потока, после чего происходит «самовоз­буждение» генератора.

11>

Дата добавления: 2016-11-29; просмотров: 23568; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Как расшифровать данные

Трансформаторы обозначаются в виде набора букв и цифр вида ХХХХХХ – 1234/1234 – Х1, где вместо буквы «Х» ставится некая буква, которая по порядку показывает тип, количество фаз, как множество низковольтных обмоток, система охлаждения и специальные обозначения для специальных типов трансформаторов.

Не всегда все буквы будут присутствовать в обозначении трансформатора, их наличие в маркировке зависит только от наличия этих характеристик.

Цифровые обозначения отражают основные характеристики трансформаторов: номинальную мощность, номинальный класс напряжения обмотки ВН, а последние две цифры обозначают год начала производства.

Тип

Если в начале символа стоит буква «А», значит перед вами автотрансформатор. Если он отсутствует, силовой трансформатор является повышающим или понижающим.

Для обозначения количества фаз используются буквы «Т» – трехфазный и «О» – однофазный.

Расщепленная обмотка

За этой буквой следует информация о разделенной обмотке – «П». Это означает, что есть две или три обмотки на понижающем напряжении.

Отвод тепла

Система охлаждения обозначается следующими буквами:

  • В – трансформатор сухой, то есть воздушного охлаждения;
  • СЗ – то же, но в защищенном варианте;
  • ПГ – герметичный с воздушным охлаждением;
  • СД – воздушное охлаждение с вентилятором;
  • М – масляное охлаждение с естественной циркуляцией;
  • D – масляный бак охлаждается вентилятором (нагнетателем);
  • C – принудительная циркуляция масла;
  • DC – это комбинация двух методов охлаждения: обдува и циркуляции.

Число обмоток

После системы охлаждения может стоять буква «Т», обозначающая трехобмоточный трансформатор. Интересно, что двойная обмотка не имеет символа.

Регулировка напряжения под нагрузкой

Если количество витков трансформатора можно изменить, не отключая электрическую цепь, в этом случае это означает, что напряжение можно регулировать под нагрузкой, и обозначается буквой «H». В регулировке с отключением – переключение без возбуждения – буква отсутствует.

Исполнение

Есть устройства со специальными дизайнерскими решениями. Подвесные трансформаторы обозначаются буквой «П», с литой изоляцией – «L», энергосберегающие – буквой «E», а улучшенные – буквой «U».

Назначение

В зависимости от области применения в конце маркировки может быть буква с информацией об этом. Для работы в самой электростанции – «С», при использовании на железных дорогах – «F», на металлургических предприятиях – «М».

Особые обозначения

Существуют отдельные категории трансформаторов, для которых применяются разные обозначения. В частности, это трансформаторы тока и напряжения. Тип сразу указывается в начале буквенного кода: «T» для первого типа и «H» для второго. Информация о способе установки следующая: «P» для контрольных точек, «O» для точек опоры и «W» для сборных шин. Изоляция также обозначается специальными буквами: «L» – для литой изоляции, «F» – для фарфора и «B» – для интегрированной изоляции.

Цифры

Цифровая маркировка дает только самые основные характеристики трансформатора. Цифры, следующие за чертой сразу после букв, обозначают номинальную мощность в киловольт-амперах (кВА). Затем через косую черту указывается мощность обмотки, а для автотрансформаторов через другую полосу – класс напряжения обмотки. Далее указывается климатический вариант, то есть условия местности, в которых данный экземпляр может работать («Y» – для умеренных зон, «X» – для холодных и т.д.) в тип помещения – на открытом воздухе или в помещении. В некоторых случаях прочерк обозначает год выпуска или начало выпуска устройств данной конструкции.

Устройство трехфазного силового трансформатора

Основными частями трансформатора являются магнитопровод и обмотка. Магнитопровод собирается из листов электротехнической стали толщиной 0,3-0,5мм. Изоляция листов представляет собой покрытие лаковой пленкой листа стали с обеих сторон. Магнитопровод разделяется на стержни и ярмо. Стержень это вертикальная часть магнитопровода, на которую насаживается обмотка. Ярмо – это горизонтальная часть, которая замыкает магнитный поток.

Трехфазные трансформаторы чаще всего выполняются с тремя стержнями (стержневой тип), на которых располагаются три обмотки. Соединение стержней и ярма бывает двух видов – стыковое и шихтованное. Стыковое соединение – ярмо и стержни крепятся соединительными деталями, при этом удобно снимать обмотки. При шихтованном соединении – ярмо и стержни собираются листами стали внахлест, в этом случае уменьшается магнитное сопротивление магнитопровода за счет уменьшения воздушного зазора. Также механическая прочность шихтованного соединения выше, чем у стыкового соединения.

Обмотки трансформатора выполняют из медного проводника круглого или квадратного сечения. Изоляцией выступает кабельная бумага или хлопчатобумажная пряжа.

Магнитопровод с баком заземляют, для безопасности на случай обрыва обмотки.

В масляных трансформаторах магнитопровод с обмоткой опускают в бак, залитый трансформаторным маслом. Масло отбирает тепло от обмоток. Характеристики масла выше, чем у воздуха, следовательно, габариты масляного трансформатора и сухого трансформатора одной мощности более выигрышны у масляного трансформатора.

При изменении климатических условий уровень масла может меняться. Происходит это не в баке трансформатора, а в специальном расширителе, который представляет собой сосуд на крышке бака, сообщающимся с ним.

При ненормальных режимах, таких как короткие замыкания, может изменяться давление масла, из-за выделения газов в масле. Для сброса этого давления на трансформаторах используют выхлопную трубу. На верхней части трубы находится стеклянная пластина. При повышении давления пластина разлетается, и давление выходит из трансформатора.

На мощных трансформаторах предусмотрено газовое реле. При повышении давления из-за выброса газов (например, при коротких замыканиях внутри трансформатора) происходит срабатывание реле и идет сигнал на отключение выключателя. После чего трансформатор отключается от сети.

Соединение обмоток с сетью происходит через ввода трансформатора. Они бывают различной конструкции: с главной изоляцией фарфоровой покрышки, конденсаторные проходные изоляторы, с бумажно-масляной, полимерной, элегазовой, маслобарьерной изоляцией.

В трансформаторах встречается возможность изменять число витков обмоток (группы соединения обмоток). Для этих целей используются ПБВ (переключатель числа витков без возбуждения) и РПН (регулирование числа витков под нагрузкой).

Как выбрать силовой трансформатор

Выбор силового трансформатора для работы на предприятиях основывается на выборе мощности, а также с соблюдением требований по надежности электроснабжения. Для обеспечения бесперебойного электроснабжения в некоторых случаях необходимо установить несколько трансформаторов. Мощность каждого устройства выбирается таким образом, чтобы в случае неисправности другие устройства могли взять на себя функции этого недостающего звена с учетом любых перегрузок.

Еще один важный критерий — наличие защиты:

  • От внутренних повреждений. Оснащен приборами, контролирующими наличие газа, температуру, давление и уровень маслоохладителя.
  • От перегрузок. Так называемая дифференциальная защита используется, когда трансформаторы тока установлены на каждой фазе.

КОНСТРУКЦИЯ И УСТРОЙСТВО

Конструкцию трансформатора составляют сердечник и несколько обмоток. Переменный ток, проходящий через витки первичной обмотки создает магнитный поток в сердечнике, который, в свою очередь, индуцирует ЭДС во всех остальных обмотках.

Основу любого силового трансформатора составляет сердечник из ферромагнитного материала с несколькими обмотками. Для магнитопровода сердечника используется специальное тонколистовое трансформаторное железо с магнитомягкими свойствами.

Популярные статьи  Почему ноль звонится на фазу в розетке и опасно ли это?

Листы железа в сердечнике собираются таким образом, чтобы стержни, на которых размещаются обмотки, имели форму, которая приближается в сечении к кругу.

Это облегчает намотку провода и улучшает использование площади магнитопровода. Отдельные листы сердечника укладываются таким образом, чтобы стыки между отдельными пластинами перекрывались целыми листами. Это позволяет избежать лишних потерь и повышает КПД трансформатора.

Обмотки трансформатора выполняют в большинстве случаев из изолированных медных проводов круглого или прямоугольного сечения. Обычно первой наматывается обмотка низкого напряжения, поскольку уменьшаются затраты на изолирование обмотки от сердечника.

Между отдельными слоями обмоток, а также между самими обмотками при изготовлении предусматривают пустоты для циркуляции охладителя.

В качестве охладителя в мощных трансформаторах применяется масло, которое отбирает тепло от обмоток и передает его в окружающую среду через радиаторные трубки.

Масляная система охлаждения оборудована устройствами для компенсации температурного расширения масла и удаления из него влаги. Имеются устройства защиты, которые размыкают электрическую цепь при резком повышении давления и клапаны сброса давления.

Особые технологи выполнения обмоток и изоляции позволили производить силовые трансформаторы, которые не нуждаются в громоздком и пожароопасном масляном оборудовании. Такие изделия получили название «сухих».

Включение трансформаторов на параллельную работу

Стоит отличать данный режим (1 на рисунке ниже — трансформаторы подключены к общим шинам как со стороны ВН, так и со стороны НН) от другого, когда подключение к общим шинам есть только с высокой стороны (2 на рисунке, совместная работа), то есть к секции 10кВ подключены два транса, а с низкой стороны каждый из них питает свою секцию 0,4кВ.

Если отключается один из Т (1 на рис.), то на втором происходит перегрузка, но все механизмы остаются в работе. Если же отключается один из трансов (2 на рис.) — то нагрузка либо отключается, либо переходит на резервный источник питания по АВР.

Ну и естественно расчет схем замещения для данных случаев будет разным:

  • 1 — складываем // сопротивления двигателей, затем складываем // иксы трансформаторов, а затем последовательно первое со вторым
  • 2 — суммируем ветви (двигатель плюс трансформатор), затем полученные иксы складываем параллельно

Далее буду рассматривать только схему под цифрой 1 на рисунке. Для чего же может применятся параллельная работа трансформаторов:

  • повышается надежность, так как при выходе из строя одного из трансов, потребитель не лишается энергии.
  • резервная мощность параллельно включенных трансформаторов будет больше, чем у одного большого
  • при сезонных снижениях нагрузки (зимой больше нагрузки, летом меньше) возможно отключение одного из нескольких. При этом будет обеспечен более экономичный режим работы, так как уменьшаться потери холостого хода

Все плюсы улетучиваются, если установлено два транса по причине нехватки мощности одного из-за роста нагрузки например.

Условия параллельной работы:

  • Равенство номинальных напряжений первичных и вторичных обмоток. Следовательно и одинаковое число витков первичных и вторичных обмоток для всех параллельно работающих трансформаторов. Так же перед включением необходимо проверять положения ПБВ и РПН. Если всё подобрано правильно то не должны возникать уравнительные токи. Они возникают из-за неравенства коэффициентов трансформации и текут даже в режиме холостого хода. Воспользовавшись схемой аналогичной схеме замещения ТТ, можно вывести формулу уравнительного тока:

В данной формуле U’, U»; I’, I» — напряжения и токи первого и второго;

uk1, uk2 — напряжения короткого замыкания в процентах;

Избавиться от уравнительного тока можно либо переключив устройства регулировки в нужное положение, либо, устроив ремонт, добиться одного числа намотанных витков.

Равенство напряжений короткого замыкания. Напряжение короткого замыкания — такое напряжение, которое необходимо подать в одну из обмоток при замкнутой второй, чтобы в обеих тек номинальный ток. Данное условие необходимо выполнять потому, что отношение uk пропорционально распределению нагрузок и токов.
Принадлежность к одной группе присоединения
Отношение максимальной мощности к минимальной параллельно работающих трансформаторов должно быть не более 3 к 1. Если отношение мощности будет больше трех, то перегрузка меньшего из Тр может быть больше допустимой и целесообразнее будет вообще его отключить.
По ГОСТ 11677-85 ни одна из обмоток не должна быть перегружена током больше допустимого для данной обмотки
Если имеется РПН, то окончание переключения ответвлений должно происходить практически одновременно у всей группы. Трансформаторы с РПН мощностью ниже 1000кВА не предназначены для параллельной работы
Число параллельно работающих трансформаторов выбирается исходя из условия наименьших суммарных потерь холостого хода и нагрузочных потерь всех машин.

Первичные и вторичные обмотки соединяются параллельно. При отключении одного, на втором Т возникает перегрузка, которая должна быть учтена при отстройке уставки МТЗ.

На // подключенных т мощностью 4 МВА и выше должна устанавливаться ДЗТ. Она производит быстрое и селективное срабатывание, отключая только поврежденное оборудование. В случае с МТЗ, при аварии со стороны НН могут отключиться оба трансформатора за счет равенства выдержек времени.

Для более глубокого погружения в данный вопрос рекомендую прочитать книгу Г.В. Алексенко — Параллельная работа трансформаторов и автотрансформаторов (Трансформаторы, вып. 17) — 1967 года.

Что делает трансформатор

Принцип действия основан на электромагнитной индукции. Переменный ток создает переменное магнитное поле вокруг проводника, которое, изменяясь, создает электродвижущую силу.

Когда мы прикладываем напряжение к первичной обмотке, ток в этой обмотке создает переменный магнитный поток. Он действует как на первую, так и на вторую обмотки, создавая внутри себя ЭДС. При подключении потребителя к сети в обмотке появляется электрический ток.

Эта схема работает только на переменном токе. При постоянном токе магнитный поток не изменяется, и если вторичная обмотка в поле этого тока не вращается вручную (что в нашем случае не будет работать), она не будет создавать никаких электромагнитных полей.

Упрощенное математическое выражение работы

Силовые трансформаторы - устройство и принцип действия
М. Фарадей однажды провел эксперимент, который показал, что напряжение в цепи, являющейся проводником, зависит от изменения магнитного потока, проходящего через эту цепь в единицу времени:

U = -ΔΦ / т

Когда у нас много таких циклов, например N, равенство будет выглядеть немного иначе:

U = -N * / Δt

Следовательно, на первой и второй обмотках напряжения будут:

U1 = — (N1) * / Δt

U2 = — (N2) * / Δt

Поскольку магнитный поток и время для наших обмоток имеют одинаковое значение, вы можете найти соотношение между напряжениями в обмотках:

U1 / U2 = N1 / N2 = n

И это n называется коэффициентом трансформации напряжения.

Если предположить, что первая обмотка преобразует всю свою мощность в магнитный поток, а это, в свою очередь, создает такую ​​же мощность во второй, мы получим следующее:

P1 = (U1) * I1

P2 = (U2) * I2

А если P1 = P2, то U1 / U2 = I2 / I1

Представленные выше модели работают как идеалы. На самом деле работа трансформатора осложняется рядом побочных эффектов, влияющих как на работу самого устройства, так и на работу сети в целом. Перечислим эти явления:

Силовые трансформаторы - устройство и принцип действия

  1. Ток холостого хода. Наблюдается при включении трансформатора в виде резкого скачка и может привести к выходу из строя коммутационного оборудования, поэтому учитывается при проектировании.
  2. Емкость и паразитные индуктивности. Они образуются из-за близости активных проводников в обмотке. В принципе, их можно игнорировать до тех пор, пока не будет упоминания о высоких частотах или перегрузках в цепи. Они ярко проявляются во время грозы, приводя к беспорядочным колебаниям напряжения с различным результатом: от падения напряжения до пробоя и отказа. В высокочастотных трансформаторах паразитная индуктивность уже вносит существенные изменения в работу устройства, в котором установлены такие трансформаторы. Они борются с этим явлением, заземляя экран между обмотками, используя хорошие изоляторы для намотки проводника.
  3. Побочные эффекты работы магнитного поля в ферромагнетиках сердечника. В железе, кобальте и никеле существует такое явление, как остаточная намагниченность, которая вносит свои собственные коррективы в изменение напряжения в обмотках до такой степени, что на графике оно все меньше и меньше кажется синусоидой. Кроме того, магнитное поле наводит в сердечнике вихревые токи Фуко, которые приводят к перегреву трансформатора. Эти проблемы частично решаются слоистой структурой сердечника, но не полностью.
Популярные статьи  Почему после замены электросчетчика ломаются телефоны во время зарядки?

Классификация установок

Деление оборудования на классы зависит от различных параметров.

Оно может осуществляться по:

  1. Назначению;
  2. Способу установки;
  3. Числу ступеней;
  4. Типу изоляции;
  5. Номинальному напряжению.

Исходя из особенностей использования приборы бывают:

  • Измерительными;
  • Защитными;
  • Промежуточными.

Причем первые подразделяются на трансформаторы тока и напряжения.

Смотрим видео, принцип работы и виды трансформаторов:

Что касается установки, то такое оборудование может быть расположено не только в закрытых помещениях, но и на улице. Поэтому исходя из этого параметра различают приборы следующих типов:

  1. Наружные;
  2. Внутренние;
  3. Стационарные;
  4. Переносные.

Изоляция обмоток у трансформаторов может быть, как сухой, так и бумажно-масляной или компаундной. Имеются отличия и в числе ступеней. В зависимости от этого параметра устройства делятся на:

  • Одноступенчатые;
  • Каскадные.

Еще одной отличительной чертой различных моделей может быть номинальное напряжение. Согласно его значению, трансформаторы классифицируются на низко- и высоковольтные.

Силовые трансформаторы - устройство и принцип действия

Кроме того, силовые устройства могут подключаться к одно или трехфазным электросетям.

По конструктивному исполнению силовые трансформаторы делятся на имеющие следующие типы вводов:

  • С главной изоляцией фарфоровой покрышки;
  • С маслобарьерной;
  • С бумажно-масляной;
  • С полимерной.
  • Конденсаторные проходные;

Характеристики и расчет трансформатора

Обычно основные параметры прибора указываются в технической документации, входящей в его комплектацию. Для трансформаторов таковыми являются:

  • Мощность и напряжение (номинальные);
  • Максимальный ток обмотки;
  • Габариты;
  • Масса.

Рассмотрим более подробно, что они обозначают. Номинальная мощность устройства рассчитывается и указывается производителем. Она выражается в киловольт-амперах.

Номинальное напряжение состоит из первичного, на которое рассчитана соответствующая обмотка и вторичного, измеряемого на зажимах. Величина этого параметра может изменяться до 5% в сторону уменьшения или увеличения. Определить ее можно выполнив упрощенный расчет силового трансформатора.

Смотрим видео, делаем правильный расчет:

Номинальные мощность и ток прибора должны соответствовать существующим ГОСТам. Сегодня выпускаются сухие модели, у которых этот показатель может иметь следующее значение:

  • 160;
  • 250;
  • 400;
  • 630 кВА.

Мощность прибора обычно указывается в паспорте прибора, а зная ее можно вычислить номинальное значение тока. Для этого используется следующая формула:

Исходя из того для какой из обмоток рассчитывается значение тока будут изменяться и входящие в формулу величины. Расчет мощности силового трансформатора по нагрузке лучше доверить специалистам. Это позволит избежать неприятных моментов в процессе эксплуатации.

Кроме этого номинальными напряжениями считают значение линейной величины при холостом ходе на обеих обмотках. Значения токов рассчитываются по мощности прибора. Выбирая оборудование следует учитывать, что расчет силового тороидального трансформатора будет несколько отличаться от приведенного выше. Найти информацию по этому вопросу можно в сети.

Конструктивные особенности

Это очень полезное устройство. Трансформатор — это устройство, которое представляет собой сердечник с двумя обмотками. На них должно быть одинаковое количество витков, а сам сердечник набирается из электротехнической стали. На входе устройства подаётся напряжение, в обмотке появляется электродвижущая сила, которая создаёт магнитное поле.

Основной принцип работы устройства.

Через это поле проходят витки одной из катушек, благодаря чему возникает сила самоиндукции. В другой же возникает напряжение, отличающееся от первичного на столько раз, на сколько отличается число витков обеих обмоток.

С его помощью мы легко можем понизить напряжение и ток в цепях переменного тока. Появление трансформаторов сделало практической реальностью передачу электроэнергии на большие расстояния. Трансформаторы позволяют уменьшить потери на проводах линий электропередач (соединяющих генерирующие станции с нагрузками) понижения переменного тока.

На обоих концах (как на генераторе, так и на нагрузках) трансформаторы понижают уровни напряжения до более безопасных значений и снижают стоимость применяемого оборудования.

Понижающий трансформатор может быть различных типов и видов: одно- или трехфазный, с открытым корпусом или с защитным кожухом. Одна из важнейших характеристик прибора – это коэффициент трансформации, который не должен превышать 1. Основные факты о понижающих трансформаторах приведены на рисунке ниже.

Силовые трансформаторы - устройство и принцип действия
Основные факты о понижающих трансформаторах.

В зависимости от модификации устройство преобразовывает электрический ток разного начального напряжения, которое может достигать 660В. Трансформатор, понижающий до 220В, получил наибольшее распространение. Существует также понижающий до 380 Вольт трансформатор.

Магнитопровод – это совокупность элементов ферромагнитного материала (обычно электротехническая сталь), которые собраны в определенной геометрической форме. В нем происходит локализация основного магнитного поля трансформатора понижающего.

Вся магнитная система вместе со всеми компонентами называется остовом. При этом часть, где располагаются основные обмотки, называют стержнем. А часть, необходимая для замыкания магнитной цепи, – это ярмо.

В соответствии с расположением стержней в пространстве понижающий трансформатор может иметь плоскую, пространственную, симметричную либо несимметричную магнитную систему.

В соответствии с предъявляемыми требованиями для каждого случая выходное напряжение может быть разным: например, трансформатор, понижающий до 36 Вольт, а также 12, 24, 42В и т.д. В видео подробно рассказано про принцип работы прибора.

Какой сердечник лучше

Понижающие трансформаторы напряжения отличаются конструктивными особенностями. Производители делают выбор в пользу одной из двух концепций – броневая или стержневая.

Принципиальное отличие технических решений сводится к тому, что в первом случае обмотки заключены в сердечнике броневого типа, а во втором – сердечник заключен в обмотках стержневого типа.

При этом в устройствах первого типа ось обмоток может располагаться вертикально или горизонтально, в то время, когда во втором случае – ось размещается вертикально.

Будет интересно Необходимые условия для выполнения параллельной работы трансформаторов

Однако способ производства не влияет на эксплуатационные характеристики и надежность устройства. Предприятие выбирает тот вариант, который считает наилучшим с точки зрения организации технологического процесса.

Силовые трансформаторы - устройство и принцип действия
Сердечник и катушки понижающего трансформатора.

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

  1. По назначению:
    • защитные;
  2. линейки измерительных трансформаторов тока;
  3. промежуточные (используются для выравнивания токов в системах дифференциальных защит);
  4. лабораторные.
  5. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
  6. внутренние (размещаются в ЗРУ);
  7. встраиваемые;
  8. накладные (часто совмещаются с проходными изоляторами);
  9. переносные.

Рис. 8. Пример наружного использования ТТ

Классификация по типу первичной обмотки: многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;

одновитковые;

шинные.

По величине номинальных напряжений:

  • До 1 кВ;

Свыше 1 кВ.

Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: