Симметрирующие трансформаторы

Подключение счетчика через трансформаторы

Общие требования

Схемы подключения счетчиков через трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.

При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.

При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.

Счетчик трансформаторного включения имеет 10 либо 11 выводов:

Симметрирующие трансформаторы

Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.

В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм 2 по меди и не менее 4 мм 2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)

Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:

Симметрирующие трансформаторы

ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме. Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

Подключения счетчика через трансформаторы тока

Симметрирующие трансформаторы

Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:

Примечание: Расчет трансформатора тока можно произвести с помощью нашего онлайн калькулятора.

Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:

2.1 Десятипроводная схема

Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:

Симметрирующие трансформаторы

Фактически десятипроводная схема будет иметь следующий вид:

Симметрирующий шлейф

На рис. 1-55 изображена конструкция симметрирующего шлейфа, который, как нетрудно видеть, представляет собой разновидность симметрирующего устройства, рассмотренного выше. Симметрирующий шлейф отличается лишь тем, что кабель питания соответствующей длины (несколько больше λ/4), очищенный от внешней защитной оболочки, пропускается в трубку Т1, и таким образом обеспечивается контакт между оплеткой кабеля и трубкой Т1.Центральная жила кабеля питания через проходной изолятор выводится из трубки T1 и подсоединяется к трубке Т2. Замыкающую перемычку в нижнем конце шлейфа делают обычно подвижной для точной настройки.

Как подключить понижающий трансформатор

Чаще всего установка трансформатора требуется чтобы понизить напряжение. Поэтому, как правильно подключить трансформатор такого понижающего назначения, вопрос который звучит очень часто. При подключении этого устройства, главное правильно выбрать его в соответствии с:

  • Величиной входного напряжения, то есть подаваемого на первичную;
  • Величиной выходного напряжения на выводах, их может быть несколько, в зависимости от конструкции;
  • Мощностью, которая зависит уже от мощности потребителей.

Подключение диодного моста к трансформатору может быть выполнено если есть необходимость получения постоянного напряжения. Вот схемы подключения диодного моста к однофазной, или к трёхфазной сети.

Виды согласующих трансформаторов

Наибольшее применение на практике получил звуковой согласующий трансформатор входного и выходного типов. Для усилителей на транзисторной элементной базе используют устройства серии ТОТ (оконечный транзисторный), а на ламповых элементах ТОЛ (оконечный ламповый).

Симметрирующие трансформаторы

В качестве входных получила применение серия ТВТ (входной транзисторный).

Симметрирующие трансформаторы

Для антенны применяют устройства тороидального типа на ферромагнитных кольцах или конусах необходимого диаметра. Отметим, что для таких трансформаторов не обязательна сплошная намотка по сечению магнитопровода. Достаточно провести через внутреннюю часть прямые проводники, что позволяет сэкономить на производстве за счет уменьшения потребности в электротехнических материалах.

Назначение

Известно, что минимизировать потери электрических сигналов при передаче потребителю можно только тогда, когда его полное сопротивление соответствует внутреннему сопротивлению источника. Это правило действует для всех схем — многокаскадных электронных устройств, при подключении нагрузки к усилителям или подаче на них сигнала, например, от звукоснимателя или микрофона.

Основное назначение согласующего трансформатора связано именно с необходимостью масштабирования сопротивления источника и нагрузки. При этом само непосредственное изменение показателей силы тока и напряжения не имеет значения. Применяются такие приборы тогда, когда требуется подключение нагрузки, не соответствующей по сопротивлению допустимым значениям для источника сигнала.

Популярные статьи  Что делать, если падает напряжение в доме до 160 вольт?

Монтаж силовых трансформаторов

Установка силового трансформатора должна выполняться специально обученными бригадами под руководством высококвалифицированных электротехнического персонала. Они должны иметь достаточный опыт по производству этих работ в чётком соответствии с ТТМ 16.800.723–80. Масляные трансформаторы, применяемые в силовых электроустановках, отправлять завод изготовитель может в следующих состояниях:

  1. С залитым полностью маслом и собранные;
  2. Частично разобранные, с герметичным баком, в котором масло залито ниже крышки;
  3. Демонтированные частично без масла, бак заполнен инертным газом;

Все работы по монтажу трансформаторов выполняются в чёткой регламентированной последовательности

  1. Разгрузка электрооборудования после прибытия с завода изготовителя;
  2. Транспортировка к месту установки;
  3. Подготовительные монтажные работы;
  4. Проверка состояния всех обмоток и переключателей;
  5. Установка на выполненный заранее крепкий фундамент;
  6. Монтаж охлаждающей системы и заливка масла, подключение вентиляторов обдува;
  7. Осмотр на отсутствие течи масляной продукции;
  8. Испытание трансформатора и пробное включение выполняется сразу без нагрузки в течение суток.

При этом монтаж трансформаторов лучше и безопаснее производить в светлое время суток.

Симметрирующий трансформатор

Если понижающий трансформатор нагружать неравномерно то произойдёт перекос фаз, что является отрицательно влияющим механизмом. Следствием такой работы и потребления электроприёмников будет увеличение потребления электроэнергии, а со временем сбои и преждевременное разрушение изоляции. Безопасность питающихся потребителей при этом будет под угрозой. Для того чтобы не допустить этого нужно симметрировать фазы, за счёт применения симметрирующих трансформаторов.

Как видно из схемы здесь есть дополнительная обмотка, которая должна выдерживать номинальной ток одной из фаз. Она включается в разрыв нулевого проводника, что приводит к неплохим результатам, то есть симметричному вырабатыванию равных токов в нагрузке.

Назначение и виды

Симметрирующие трансформаторыТрехфазный трансформатор

Классический станционный трехфазный силовой трансформатор используется для преобразования высоковольтной энергии в удобную для потребителя форму. На его первичные обмотки подается высокое напряжение (6,3-10 киловольт), а на выходе получают более удобные для использования в быту 220 Вольт. Эта величина измеряется между фазами и нулевой жилой трансформатора, называемой нейтралью. Ее принято обозначать как фазное напряжение, в отличие от линейных 380 Вольт, отсчитываемых между каждой из фаз.

Трехфазные понижающие трансформаторы этого класса обеспечивают передачу тока от местной подстанции по подземному кабелю или линии электропередач непосредственно до конечного потребителя. Для этих целей используется специальный 4-хжильный кабель в бронированном сердечнике, либо воздушный провод марки СИП. По ним электрическая энергия доставляет прямо по назначению — на вводно-распределительные устройства обслуживаемых территорий и объектов.

По своему функциональному назначению 3 фазные трансформаторы подразделяются на следующие классы:

  • линейные (станционные) устройства;
  • специальные преобразовательные агрегаты.

Симметрирующие трансформаторыИспытательный трансформатор

Специальные устройства делятся на следующие виды:

  • Испытательные трансформаторы. К ним принято относить трехфазные автотрансформаторные системы.
  • Устройства, используемые для питания специальной аппаратуры: сварочных агрегатов, в частности.
  • Симметрирующие трансформаторные агрегаты.

Первые два типа применяются в исследовательских целях. Трансформаторы симметрирующие трехфазные используются для устранения перекоса фаз, возникающего в электрических сетях из-за неравномерности распределения нагрузок.

Симметрирующий трансформатор ТСТ

Чтобы улучшить качество электроэнергии используется симметрирующий трансформатор, принцип работы которых основан на перемагничивании обмоток.

Трансформатор симметрирующий трехфазный служит для выравнивания значений напряжения на фазах сети, способствует энергосбережению за счет сохранения уровня напряжения и добиваясь симметричной фазной нагрузки.

Симметрирующие трансформаторы

Рис № 2. Внешний вид симметрирующего трансформатора ТСТ

Трансформатор с симметрирующим устройством способствует повышению степени надежности и длительности безопасной эксплуатации источников питания. Происходит это при использовании защитного зануления, «ноль» трансформатора задействован как нулевой рабочий проводник, а «ноль» сети напряжения применяется как защитный «ноль» электрооборудования.

При использовании ТСТ нагрузка по одной фазе воспринимается электрической сетью как трехфазная, что способствует восстановлению симметрии нагрузок.

Использование ТСТ вместе с трехфазным ИБП усиливает защиту 3-фазной сети от нелинейной 1-фазной нагрузки. для дополнительной защиты сети от высших гармоник используется регулировка амплитуды входного напряжения на входах управляемых выпрямителей и обоснованное ограничение диапазона изменения угла управления α.

Широкое применение модели симметрирующих трансформаторов нашли в радиоделе. Так, симметрирующий трансформатор, 1 1 – служит для симметрирования тока в плечах антенны и используется для подавления синфазного тока в оплетке питающего кабеля, где 1:1 это коэффициент трансформации напряжения.

При приобретении такой продукции, как симметрирующий трансформатор, цена зависит от параметра напряжения, на которое он рассчитан и коэффициента трансформации.

Так, к примеру, стоимость ТСТ 63 кВа трехфазного симметрирующего трансформатора составит более 115 тыс. руб.

Особенности конструкции

Передача энергии между обмотками в трансформаторах осуществляется за счет воздействия создаваемого магнитного поля. В зависимости от типа согласующего устройства оно может иметь разную конструкцию:

  1. Устройства для работы с низкочастотным электрическим сигналом обычно наматывают на броневых или стержневых сердечниках из электротехнической стали. Именно такие устройства применяются в усилителях и звуковоспроизводящей аппаратуре. Габаритные размеры зависят от передаваемой мощности, но обычно они не отличаются большими значениями.
  1. Для высокочастотных согласующих трансформаторов чаще всего применяют тороидальные сердечники из ферромагнитных веществ. Они имеют форму кольца с прямоугольным сечением.
  2. Отдельные виды ВЧ согласующих устройств могут быть выполнены по принципу воздушных трансформаторов. Простейший пример — петля из коаксиального кабеля, которая устанавливалась при подключении антенны к основному проводу. Существует вариант и распечатанных непосредственно на плате маломощных трансформаторов согласующего типа.

Для обмоток применяют изолированный медный провод круглого сечения, диаметр которого подбирается на основании расчета. Допускается и намотка проводниками прямоугольной формы, но только при сечении более 5 мм2. В качестве дополнительной изоляции применяется нанесение 2 слоев специального лака.

Симметрирующие трансформаторы

Классы разновидностей симметрирующих устройств

Симметрирующие устройства подразделяются на три класса:

  1. Конденсаторные и электромагнитные шунтосимметрирующие устройства (ШСУ), за счет подключения в сеть реакторов и конденсаторных батарей, основанных на минимальном сопротивлении токам нулевой последовательности, за счет шунтирования замыкания на себя этих токов.

Недостаток – высокая цена реактора.

Применяются для измерения и управления.

  1. Компенсационные СУ – за счет включения в рассечку нулевого провода трансформатора компенсационной обмотки СУ. Малый диапазон симметрирования.
  2. Преобразующие СУ – за счет использования преобразующих статических устройств как-то: выпрямители, тиристорные регуляторы, высокочастотные преобразователи электромашины постоянного тока, использование электронных балластов в осветительных газоразрядных приборах и так далее.
Популярные статьи  Вольт-амперные характеристики электрических ламп

Симметрирующие трансформаторы

Рис № 1. Схема устройства и включения компенсационных обмоток в основную обмотку силового трансформатора. 1. – магнитопровод трансформатора. 2 – сбмотка высокого напряжения. 3 – обмотки низкого напряжения. 4 – компенсационная обмотка. 5 – дистанционные клинья. 6 – выводы компенсационной обмотки с подключением к нейтрали. 7 – наружный вывод компенсационной обмотки

Параллельное подключение трансформаторов

Параллельная работа их необходима для обеспечения большей мощности потребителям, которых они снабжают энергией. Для организации и включения силовых трансформаторов в параллель необходимо учесть пять основных правил и условий:

  1. Одинаковы группы соединения обмоток;
  2. Одинаковы коэффициенты трансформации всех преобразователей включаемых в параллель. Допускается разница в пределах ±0,5%;
  3. Выполнена правильная фазировка;
  4. Напряжение короткого замыкания всех трансформаторов должно быть равным или отличается не более чем на 10%;
  5. Соотношение мощностей должно отличаться не более чем в три раза.

Перед тем как подключить трансформатор в такую параллельную работу необходимо убедиться в выполнении всех этих пунктов.

экспертное мнение

Сергей Сергеевич Кустов, заведующий лабораторией надежности электроснабжения ОАО «РОСЭП»:

В статье белорусских специалистов затрагивается проблема потерь электроэнергии – довольно болезненная для российской энергетики. Основные потери у нас приходятся на сети 0,4 кВ. Несмотря на довольно короткие фидеры, огромные потери здесь образуются за счет несимметрии, вызванной большим количеством однофазных потребителей.
Повсеместно работающие трансформаторы со схемой «звезда–звезда–ноль» имеют собственные достаточно ощутимые потери. Мало того, в случае несимметрии сети 0,4 кВ они создают еще большую дополнительную несимметрию. Установка трансформаторов со схемами «звезда–зигзаг–ноль» или «треугольник» решает эту проблему, однако такое оборудование существенно дороже, поэтому широко не применяется.
Значительно улучшить ситуацию при относительно небольших финансовых вложениях поможет использование симметрирующих устройств. Пример тому – Беларусь, в которой накоплен большой положительный опыт эксплуатации трансформаторов с этими устройствами.
В свое время в руководящих указаниях по проектированию (РУМ) наш институт рекомендовал российским энергетикам применять симметрирующие устройства, о которых пишут белорусские коллеги. К сожалению, ни эти устройства, ни подобные им до сих пор не находят массового спроса и не производятся в нашей стране. При этом их установку вполне можно наладить на любом предприятии, занимающемся ремонтом трансформаторного оборудования

Более того, не обязательно покупать в Беларуси готовые симметрирующие устройства, достаточно приобрести технологию и наладить в России их не слишком сложное производство.
Причина равнодушного отношения к столь важной задаче заключается, на мой взгляд, в том, что до последнего времени в России никому не было дела до потерь электроэнергии, реально за них никто не отвечал, поэтому и решением этого вопроса никто не занимался. Экономическая же выгода от применения симметрирующих устройств очевидна

Их внедрение в российских сетях 0,4 кВ может стать одним из первоочередных шагов на пути реального снижения потерь электроэнергии.

Согласование с помощью четвертьволнового трансформатора (Q-match — Quarter Wavelength Transformer Matching)

Четвертьволновый фидер является трансформатором сопротивления и если имеется антенна с входным сопротивлением Rа.вх и фидер с волновым сопротивлением Qф, то для согласования необходимо включить между ними четвертьволновый трансформатор, имеющий волновое сопротивление: Qтр=√(Rа.вх*Qф).

Симметрирующие трансформаторы

Теоретически, можно построить Q-match на любой случай, если иметь возможность создавать фидерные четвертьволновые линии любого волнового сопротивления. Однако в радиолюбительской практике Q-match используется редко, например, при согласовании антенны Delta Loop (которая имеет входное сопротивление около 112 Ом) с 50-омным кабелем. В этом случае между антенной и фидером включается четвертьволновый отрезок 75-омного кабеля. Другим ограничением для Q-match является однодиапазонность.

Монтаж измерительных трансформаторов

В ОРУ 110 (220) кВ тяговых подстанций применяют измерительные трансформаторы напряжения типа НКФ-110 (220) и трансформаторы тока типа ТФЗМ-110 (220), которые поставляются под монтаж в собранном виде.

Трансформатор напряжения НКФ-110 (трансформатор напряжения каскадный, фарфоровый) состоит из цилиндрической фарфоровой втулки с трансформаторным маслом, смонтированной на тележке и закрытой металлическим колпаком – расширителем с указателем уровня масла. Первичная обмотка, состоящая из двух одинаковых последовательно соединенных секций, находится внутри фарфоровой втулки и подсоединяется началом к зажиму, расположенному на расширителе, а концом – к тележке (земле). Средние точки секций соединены со своими сердечниками. Вторичную обмотку размещают на сердечнике секции, соединенной с землей. На тележке смонтированы выводы вторичной обмотки, заземляющий болт и рым-болты для подъема трансформатора.

Трансформаторы напряжения НКФ-220 состоят из двух блоков.

Для РУ 6, 10 и 35 кВ трансформаторы тока (типов ТЛМ-6, ТПЛ-10, ТФН-35, ТФЗМ-35 и др.) и напряжения (типов НТМИ-10, ЗНОМ-35 и др.) приходят в собранном виде и смонтированными в комплектные ячейки и блоки распределительных устройств заводом-изготовителем. На подстанции комплектные ячейки монтируют на лежневом основании.

Трансформатор тока типа ТФН-35 состоит из первичной и вторичной кольцеобразных обмоток, помещенных в цилиндрический фарфоровый корпус с трансформаторным маслом. Взаимное расположение обмоток имеет вид восьмерки. Такие трансформаторы выпускают с одним или двумя сердечниками. В металлическом колпаке трансформатора расположены зажимы для переключения секций первичной обмотки, маслоуказательное стекло и предохранительный клапан. Выводы вторичной обмотки расположены в коробке основания корпуса трансформатора, на котором смонтированы заземляющий болт и рым-болты для подъема трансформатора.

Измерительные трансформаторы перед монтажом следует тщательно осмотреть, обращая особое внимание на наличие трещин и сколов фарфоровых изоляторов; отсутствие следов течи из уплотнений бака, фланцев изоляторов, механических повреждений бака; уровень масла по маслоуказателю и его исправность; сообщаемость маслоуказателя и расширителя с корпусом трансформатора. При передвижении во время монтажа маслонаполненных измерительных трансформаторов угол наклона их к вертикальной оси не должен превышать 15°

При передвижении во время монтажа маслонаполненных измерительных трансформаторов угол наклона их к вертикальной оси не должен превышать 15°.

Измерительные трансформаторы устанавливают на фундаментные и свайные основания, а также монтируют на единых рамах с разъединителями на лежневые основания.

Трансформаторы наружной установки, монтируемые на железобетонных и металлических конструкциях, должны быть установлены по уровню и отвесу с допуском ±5 мм и надежно закреплены.

Работы по монтажу трансформаторов тока и напряжения производятся в следующей последовательности:

Популярные статьи  Водяные конвекторы отопления — преимущества, классификация

доставляют в транспортной упаковке в рабочую зону и разгружают автокраном грузоподъемностью 5…7 т;

распаковывают и очищают от пыли и грязи, протирая фарфоровую рубашку бензином;

проверяют исправность уплотнений, отсутствие течи масла;

замеряют уровень масла и при необходимости доливают сухим маслом с электрической прочностью не менее 45 кВ;

переключают у трансформаторов тока первичную обмотку согласно заданному проектом коэффициенту трансформации;

устанавливают автокраном грузоподъемностью 5…7 т трансформаторы, выверяя с помощью уровня и отвеса опорные конструкции, при этом маслоуказатели блоков НКФ-220 должны быть обращены в одну сторону;

для трансформаторов напряжения НКФ-220 монтируют медные перемычки между выводами ВН блоков;

заземляют корпус измерительного трансформатора через специальный болт заземления на нижнем цоколе;

устанавливают шкафы зажимов для схемной сборки вторичных цепей.

После монтажа испытывают и проверяют электрические характеристики трансформатора, проводят анализ и испытание масла.

Цепи вторичных обмоток трансформаторов тока должны быть замкнуты через приборы, а при отсутствии их закорочены на зажимах трансформаторов. Неиспользуемые вторичные обмотки следует закоротить на трансформаторах тока. Сечение закороток должно быть не менее 2,5 мм 2 .

Информация для заказа

Артикул Частота, МГц Импеданс, Несимм./Симм., Ом Вносимые потери (макс.), дБ Возвратные потери ( мин.), дБ Сдвиг по фазе Согласовано для чипсета Склад
0783FB15A0100E 779 — 787 50/100 1 ,5 9 ,5 180° ± 15  
0845BL05A0100E 729 — 960 50/100 0.85 max. (0.95 max. @85°C) 9.5 min. 180° ± 10° New!
0892FB15A0100E 863 — 928 50/100 1 ,5 11 ,7 180° ± 15  
0896FB15A0100E 868 — 928 50/100 1 ,5 11 ,7 180° ± 15  
0900BL15C050E 800 -1000 50/50 1.2 9.5 180° ± 10  
2345FB16A0100E 2300-2390 50/100 2 ,8 9 ,5 180° ± 10  
2345FB39A0050E 2300 — 2390 50/50 3 ,2 11 ,73 180° ± 10  
2450FB14K0001E 2400 — 2500 50/ † 3 ,5 9 ,5 180°±10  
2450FB15A0100E 2400-2500 50/100 1 ,5 9 ,5 180°±10  
2450FB15K0001E 2400 — 2500 50/ † 3 ,8 9 ,5 180°±10°  
2450FB15K0002E 2400 — 2500 50/ † 3 9 ,54 180°±10°  
2450FB15K0003E 2400 — 2500 50/ † 3 9 ,4 180°±10°  
2450FB15K0004E 2400 — 2500 50/ † 3 ,2 9 ,5 180°±10°  
2450FB15A050E 2400 — 2500 50/50 1 ,5 9 ,5 180°±10°  
2450FB15M0001E 2400 — 2500 50/ † 3 ,0 9 ,5 180°±15°  
2450FB39A050E 2400 — 2500 50/50 2 ,0 9 ,5 180°±10°  
2450FB39A0150E 2400 — 2500 50/150 2 ,5 9 ,5 180°±10°  
2450FB39B100E 2400 — 2500 50/100 2 ,0 9 ,5 180°±10°  
2450FB39K001E 2400 — 2500 50/22+j100 † 3 ,0 9 ,5 180°±8°  
2595FB39A0050E 2500 — 2690 50/50 3 ,2 11 ,73 180°±10°  
2450FB39C100E 2400 — 2500 50/100 3 ,0 9 ,5 180°±8°  
2500FB16A0400E 2300-2690 50/50+2.4nH 3 ,8 9 ,5 180°±10°  
2595FB16A0100E 2300 — 2690 50/100 2 ,5 9 ,5 180°±10°  
3500FB16A0100E 3400-3600 50/100 2 ,7 9 ,5 180°±10°  
3500FB39A0050E 3400 — 3600 50/50 2 ,9 9 ,5 180°±12°  
2450BM14E0007E 2400 — 2500 50 1.5 9.5 180°±10° Analog Devices ADI ADF7241 and ADF7242
0896FB15A0100E 863 — 928 50 1.5 11.7 180°±10° Atmel AT86RF212
2450FB15L0001E 2400-2500 50 1.5 9.5 180°±10° Atmel AT86RF230/231 and ATmega128RFA1
2450BM15A0015E 2400-2500 50 1.5 9.5 180°±10° Atmel AT86RF232, AT86RF233, ATmega64/128/256RFR2, Zigbit 256RFR2, Zigbit RF233, ZigBit RF233+FEM, Extension RF233, USB RF233
2450BM15B0009E 2400-2500 50 1.5 9.5 180°±10° CEL ZIC2410
2450FB15K0002E 2400-2500 50 3 9.54 180°±10° CSR BC03/BC04 (16-j40)
2450FB15K0005E 2400-2500 50 3.5 9.5 180°±10° CSR BC03/04/05
2450FB15K0008E 2400-2500 50 3.5 9.5 180°±10° CSR BC 04/05/06 series chipsets
2500FB16A0400E 2300 — 2690 50 3.8 9.5 180°±10° Infineon/Intel PMB8763
2450FB15M0001E 2400 — 2500 50 3 9.5 180°±15° MediaTek (MTK) and BC05
2450BM14A0002E 2400 — 2500 50 2 9.5 160°±15° Nordic Semiconductor nRF24L01 nRF24L01+ nRF24LE1 nRF24LU1 nRF24AP2 nRF8001 and nRF8002
2450BM14E0003E 2400 — 2500 50 ? (single ended) 0.9dB Typ@25C 1.5dB max. (-45 to +85C) 15 typ. 9.5 min. 150 ± 15° Nordic Semiconductor nRF51822-QFAA and nRF51422-QFAA
2450PC14A0017E 2400 ~ 25005150 ~ 5850 50 3,82,6   180°±15°-135±20@ 5.15GHz
165±20@ 5.85GHz
Qualcomm-Atheros AR6004_Rx BGA
430-435 50 1.9 9.5 180°±10° T.I. CC11XX and CC430
863-873 50 2.1 9.5 180°±15° T.I. CC11XX and CC430
0896BM15A0001E 863 — 928 50 1.5 9.5 180°±10° T.I. CC11XX and CC430
0900PC15J0013E 868 — 928 50 2 9.5 180°±15° T.I. CC12XX and CC1175
0915BM15A0001E 902-928 50 2 9.5 180°±15° T.I. CC11XX and CC430
0953BM15A0001E 950- 956 50 2.1 9.5 180°±10° T.I. CC11XX and CC430
2450BM15A0001E 2400 — 2500 50 1 10 180°±15° T.I. Chipsets CC2430 and CC2480
2450BM15B0003E 2400 — 2500 50 2.2dB max, 1.7dB Typ 10 180°±12° T.I. CC2500, CC2510, and CC2511
2450BM15B0002E 2400 — 2500 50 1.5 10 180°±15° T.I. CC2520
2400 — 2500 50 1.5 10 180°±15° T.I. CC253X CC254X CC257X CC852X CC853X
0433BM41A0019E 424-444 50 1.5 9.5 180°±10° SiLabs Si4455 and Si4460
0850BM14E0016E 770 — 928 50 1.3 9.5 180°±10° T.I. CC1310
865 — 870 50 2.0dB max, 1.7dB Typ 14 typ. 10 min. 180°±10° Silicon Labs EFR32
431 — 437 50 2.3dB max, 2.0dB Typ 15 typ. 10 min. -155 ± 15 Silicon Labs EFR32
0900PC15A0036E 862 — 928/ 2400 — 2500 50 1.8 typ (2.0 max.)/ 1.3 typ (1.6 max.) 14 typ. (10 min.) / 14 typ. (10 min.) 180°±15° T.I. CC1352R and CC1352P
0900FM15D0039E 862 — 870/ 902 — 928 50 0.8 typ. (1.4 max.) 12 min.   Semtech SX1261, SX1262, and LLCC68 RF
Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: