Векторная диаграмма токов и напряжений

Содержание

Примеры применения

Допустимый ток для медных проводов – плотность тока в медном проводнике

В следующих разделах приведены описания задач, которые решают с помощью представленной методики. Следует подчеркнуть, что применение комплексных чисел пригодно для сложных расчетов с высокой точностью. Однако на практике достаточно часто сравнительно простой векторной графики с наглядным отображением исходной информации на одном рисунке.

Механика, гармонический осциллятор

Таким термином обозначают устройство, которое можно вывести из равновесного состояния. После этого система возвращается в сторону исходного положения, причем сила (F) соответствующего воздействия зависит от дальности первичного перемещения (d) прямо пропорционально. Величину ее можно уточнить с помощью постоянного корректирующего коэффициента (k). Отмеченные определения связаны формулой F=-d*k

Векторная диаграмма токов и напряжений
Формулы для расчета основных параметров гармонического осциллятора

К сведению. Аналогичные процессы происходят в системах иной природы. Пример – создание аналога на основе электротехнического колебательного контура (последовательного или параллельного). Формулы остаются теми же с заменой соответствующих параметров.

Свободные гармонические колебания без затухания

Продолжая изучение темы на примерах механических процессов, можно отметить возможность построения двухмерной схемы. Скорость в этом случае на оси Х отображается так же, как и в одномерном варианте. Однако здесь можно учесть дополнительно фактор ускорения, которое направляют под углом 90° к предыдущему вектору.

Гармонический осциллятор с затуханием и внешней вынуждающей силой

В этом случае также можно воспользоваться для изучения взаимного влияния дополнительных факторов векторной графикой. Как и в предыдущем примере, скорость и другие величины представляют в двухмерном виде. Чтобы правильно моделировать процесс, проверяют суммарное воздействие внешних сил. Его направляют к центру системы (точке равновесия). С применением геометрических формул вычисляют амплитуду механических колебаний после начального воздействия с учетом коэффициента затухания и других значимых факторов.

Расчет электрических цепей

Векторную графику применяют для сравнительно несложных цепей, которые созданы из набора элементов линейной категории: конденсаторы, резисторы, катушки индуктивности. Для более сложных схем пользуются методикой расчета «Комплексных амплитуд», в которой реактивные компоненты определяют с помощью импедансов.

Векторная диаграмма токов и напряжений
Векторная диаграмма для схемы соединений без нейтрального провода – звезда

Векторная диаграмма в данном случае выполняет функцию вспомогательного чертежа, который упрощает решение геометрических задач. Для катушек и конденсаторов, чтобы не пользоваться комплексным исчислением, вводят специальный термин – реактивное сопротивление. При синусоидальном токе изменение напряжения на индуктивном элементе описывается формулой U=-L*w*I0sin(w*t+f0).

Несложно увидеть подобие с классическим законом Ома. Однако в данном примере изменяется фаза. По этому параметру на конденсаторе напряжение отстает от тока на 90°. В индуктивности – обратное распределение. Эти особенности учитывают при размещении векторов на рисунке. В формуле учитывается частота, которая оказывает влияние на величину этого элемента.

Векторная диаграмма токов и напряжений
Схемы и векторные диаграммы для идеального элемента и диэлектрика с потерями

Преобразование Фурье

Векторные технологии применяют для анализа спектров радиосигналов в определенном диапазоне. Несмотря на простоту методики, она вполне подходит для получения достаточно точных результатов.

Сложение двух синусоидальных колебаний

В ходе изучения таких источников сигналов рекомендуется работать со сравнительно небольшой разницей частот. Это поможет создать график в удобном для пользователя масштабе.

Фурье-образ прямоугольного сигнала

В этом примере оперируют суммой синусоидальных сигналов. Последовательное сложение векторов образует многоугольник, вращающийся вокруг единой точки. Для правильных расчетов следует учитывать отличия непрерывного и дискретного распределения спектра.

Для этого случая пользуются тем же отображением отдельных синусоид в виде векторов, как и в предыдущем примере. Суммарное значение также вписывается в окружность.

Векторная сумма — ток

Векторная сумма токов lt Ц I дает общий ток в цепи.

Векторная сумма токов Ij 1.2 I дает общий ток в цепи.

Хр и Rp и представляют собой векторную сумму токов статора и приведенного роторного.

Общий ток в цепи равен векторной сумме токов .

Обший ток в цепи равен векторной сумме токов .

При разветвлении тока общий ток равен векторной сумме токов в отдельных ветвях.

Таким образом, при наличии токов нулевой последовательности векторная сумма токов трех фаз отлична от нуля.

Тогда, как это видно из чертежа, векторная сумма тока повреждения , начального тока небаланса и тока температурлого небаланса может оказаться такой, что реле срабатывает в то время, как напряжение на поврежденной секции остается в пределах нормы. При этом следует помнить, что токи начального и температурного небалансов могут иметь какую угодно фазу и вызывать как неправильное срабатывание реле, так и его отказ.

В работают оба элемента; при этом ток фазы В получается как векторная сумма токов фаз Л и С. При измерении мощности работают оба элемента.

Однако это равенство может быть при уменьшении тока 1А восстановлено путем уменьшения векторной суммы токов JB IC за счет увеличения угла сдвига по фазе между этими токами.

В прерывателях остаточного тока проводники в контуре намотаны вокруг кольца, определяющее векторную сумму токов , которые входят и возбуждают оборудование, подлежащее защите. Во время нормальной работы векторная сумма равна нулю, а во время пробоя она равна току утечки. Когда ток утечки достигает порога прерывателя, прерыватель срабатывает. Прерыватели остаточного тока могут размыкаться низкими токами в 30 мА с малым запаздыванием — 30 микросекунд.

В такой цепи ток / в неразветвленной части определяется согласно первому закону Кирхгофа как векторная сумма токов в ветвях.

Источник

Диаграмма Парето — что это такое, и как ее построить в Экселе

Итальянский инженер, экономист и социолог Вильфредо Парето выдвинул очень интересную теорию, согласно которой 20% наиболее эффективных предпринятых действий обеспечивают 80% полученного конечного результата. Из этого следует, что остальные 80% действий обеспечивают всего 20% достигнутого результата.

Этот вид диаграммы позволяет высчитать те самые наиболее эффективные действия, обеспечивающие наибольшую отдачу. Давайте попробуем построить эту диаграмму, используя инструменты, доступные в программе Microsoft Excel. Самым подходящим типом диаграмм для достижения этой цели будет гистограмма.

Сложение и вычитание векторов

Главным достоинством векторных — это возможность простого сложения и вычитания двух величин. Например: требуется сложить, два тока, заданных уравнениями

Советуем изучить Освещение светодиодное в квартире и элементы отделки интерьера

Сложим два заданных тока i1 и i2 по известному правилу сложения векторов (рис. 12.12, а). Для этого изобразим токи в виде векторов из общего начала 0. Результирующий вектор найдем как диагональ параллелограмма, построенного на слагаемых векторах:

Im = Im1 + Im2

Сложение векторов, особенно трех и более, удобнее вести в таком порядке: один вектор остается на месте, другие переносятся параллель но самим себе так, чтобы начало последующего вектора совпало с концом предыдущего.

Вектор Im, проведенный из начала первого вектора в конец последнего, представляет собой сумму всех векторов (рис. 12.12, б).

Вычитание одного вектора из другого выполняют сложением прямого вектора (уменьшаемого) и обратного (вычитаемого) (рис. 12.13):

При сложении синусоидальных величин в отдельных случаях можно применить аналитическое решение: применительно к рис. 12.12, а — по теореме косинусов; к рис. 12.14, а — сложение модулей векторов; б — вычитание модулей векторов, в — по теореме Пифагора.

Параллельная электрическая цепь из конденсатора и катушки индуктивности: эквивалентная параллельная схема, векторная диаграмма токов. Резонанс токов.


комплекс общего тока через такую ветвь:Векторная диаграмма токов и напряжений;


проводимость такой цепи:Векторная диаграмма токов и напряжений,
аВекторная диаграмма токов и напряжений

,

В
зависимости от соотношения величин

Векторная диаграмма токов и напряженийВекторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений


в цепи преобладает индуктивность, т.е.Векторная диаграмма токов и напряжений,
а следовательно,Векторная диаграмма токов и напряжений.
Этому режиму соответствует векторная
диаграмма нарисунке
а
.


в цепи преобладает емкость, т.е.Векторная диаграмма токов и напряжений,
а значит,Векторная диаграмма токов и напряжений.
Этот случай иллюстрирует векторная
диаграмма нарисунке
б
.


иВекторная диаграмма токов и напряжений— случай резонанса токов (рисунок
в
).

Условие
резонанса токовВекторная диаграмма токов и напряженийилиВекторная диаграмма токов и напряжений.
Таким образом, при резонансе токов
входная проводимость цепи минимальна,
а входное сопротивление, наоборот,
максимально. В частности при отсутствии
в цепи на рисунке резистораR
ее входное сопротивление в режиме
резонанса стремится к бесконечности,
т.е. при резонансе токов ток на входе
цепи минимален.

Приведенное
условие резонанса справедливо только
для простейших схем с последовательным
или параллельным соединением индуктивного
и емкостного элементов.

19.
Мощность в электрической цепи переменного
тока: мгновенная мощность в элементах
R,L,C.
Реактивная мощность индуктивности и
емкости. Треугольник мощностей. Активная,
реактивная, полная и комплексная мощности
всей цепи.


интенсивность передачи или преобразования
энергии называется мощностью:

Векторная диаграмма токов и напряжений

мгновенное
значение мощности

в электрической цепи:Векторная диаграмма токов и напряжений,
приняв начальную фазу напряжения за
нуль, а сдвиг фаз между напряжением и
током за

Векторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений

Т.о.,
мгновенная мощность имеет постоянную
составляющую и гармоническую составляющую,
угловая частота которой в 2 раза больше
угловой частоты напряжения и тока.

Когда
мгновенная мощность отрицательна, а
это имеет место (см. рисунок), когда u
и i
разных знаков, т.е. когда направления
напряжения и тока в двухполюснике
противоположны, энергия возвращается
из двухполюсника источнику питания.

Такой
возврат энергии источнику происходит
за счет того, что энергия периодически
запасается в магнитных и электрических
полях соответственно индуктивных и
емкостных элементов, входящих в состав
двухполюсника;


энергия, отдаваемая источником
двухполюснику в течение времени t
равна

Векторная диаграмма токов и напряжений


среднее за период значение мгновенной
мощности называется активной
мощностью
:Векторная диаграмма токов и напряжений,
; Учитывая, чтоВекторная диаграмма токов и напряжений,
получим:Векторная диаграмма токов и напряжений.
Активная мощность, потребляемая пассивным
двухполюсником, не может быть отрицательной
(иначе двухполюсник будет генерировать
энергию), поэтомуВекторная диаграмма токов и напряжений,
т.е. на входе пассивного двухполюсникаВекторная диаграмма токов и напряжений.
СлучайР=0,

Векторная диаграмма токов и напряжений

мощность
на резисторе

(идеальном активном сопротивлении)
потребляется только активная, т.к. ток
и напряжение совпадают по фазе:Векторная диаграмма токов и напряжений

Векторная диаграмма токов и напряжений

мощность
на к
атушке
индуктивности

(идеальной индуктивности) не потребляется:

Векторная диаграмма токов и напряжений

Т.к.
ток отстает от напряжения по фазе на

Векторная диаграмма токов и напряженийВекторная диаграмма токов и напряжений

мощность
на конденсаторе

(идеальной емкости) также не потребляется:

Векторная диаграмма токов и напряжений

Ток
здесь опережает напряжение, поэтому

Векторная диаграмма токов и напряженийВекторная диаграмма токов и напряженийХLХСR


интенсивность поступления энергии в
магнитное поле
катушки или электрическое
поле конденсатора называется реактивной
мощностью
:Векторная диаграмма токов и напряжений,
. Она положительна при отстающем
токе (индуктивная нагрузка-Векторная диаграмма токов и напряжений)
и отрицательна при опережающем токе
(емкостная нагрузка-

Векторная диаграмма токов и напряжений

реактивная
мощность на индуктивности
:Векторная диаграмма токов и напряжений

реактивная
мощность на конденсаторе

:Векторная диаграмма токов и напряжений


полная мощность
:Векторная диаграмма токов и напряжений,


комплексная мощность
:
активную,
реактивную и полную мощности можно
определить, пользуясь комплексными
изображениями напряжения и тока. ЕслиВекторная диаграмма токов и напряжений,
аВекторная диаграмма токов и напряжений,
то комплекс полной мощности:

Векторная диаграмма токов и напряжений;

треугольник
мощностей


отображение комплексных значений
мощностей на комплексной плоскости
(приВекторная диаграмма токов и напряженийимеем следующее отображение):

Виды и построение векторных диаграмм

Векторные диаграммы широко применяются в акустике, электротехнике, оптике и других областях. Они разделяются на два основных вида – точные и качественные.

Для изображения точных векторных диаграмм применяются численные расчеты с условием, что действующие значения будут соответствовать определенным масштабам. Правильное построение дает возможность геометрического определения фаз и амплитудных значений нужных величин.

Для того чтобы сделать построение диаграмм более удобным, необходимо проанализировать состояние неподвижных векторов на определенный момент времени, выбираемый с таким условием, чтобы сама диаграмма приобрела наиболее оптимальный внешний вид.

На оси ОХ будут откладываться действительные числа, а на оси OY – мнимые числа или единицы. С помощью синусоиды отображается движущийся конец проекции на ось OY. Каждое значение напряжения и тока отображается на плоскости в полярных координатах, в соответствии с собственным вектором. Его длина будет отображать значение амплитудной величины тока, а углы будут равны фазам. Для векторов, отображаемых на диаграмме, характерна равновеликая угловая частота, обозначаемая символом ω. Поэтому во время вращения взаимное расположение угловых частот остается неизменным. Это дает возможность при построении диаграмм направить один вектор произвольно, а остальные отобразить по отношению к нему под различными углами в соответствии со сдвигами фаз.

Советуем изучить Электрический ток – что это такое

Алгоритм создания лучевой векторной диаграммы в Excel

Чтобы упростить наш урок, давайте предположим, что мы говорим об отношениях не между четырнадцатью как на графике, а пока только с 4-ма людьми по имени Антон, Алиса, Борис и Белла.

Наша матрица уровня отношений и связей между ними выглядит следующим образом:

Как можно геометрически смоделировать визуализацию этих исходных данных? Если бы мы нарисовали отношения между этими четырьмя людьми (Антон, Алиса, Борис и Белла), это схематически выглядело бы так:

Популярные статьи  Схема блока питания компьютера

2 критерия, которые нам нужно определить:

Определение и построение точек

Сначала нам нужно построить наши точки таким образом, чтобы промежуток между каждой точкой был одинаковым. Это создаст сбалансированный график.

Какая геометрическая фигура максимально удовлетворяет нашу потребность в таких равных промежутках? Конечно же круг!

Вы можете возразить, что на готовой модели диаграммы нет фигуры круга. Да действительно нет –вот так. Нам не нужно рисовать круг. Нам просто нужно построить точки вокруг него.

Таким образом, у нас есть 4 заинтересованные стороны, нам нужно 4 точки:

Как только все точки рассчитаны и подключены к XY-диаграмме (точечная диаграмма), давайте двигаться дальше.

Построение линий на лучевой диаграмме

Нам нужно разделить его на 2, как будто A знает B, тогда B тоже знает A. Но нам нужно нарисовать только 1 линию.

Шаблон лучевой диаграммы для анализа сетевого графика настроен для работы с 20 людьми. Его можно скачать в конце статьи и использовать как готовый аналитический инструмент визуализации данных связей. Это означает, что максимальное количество строк, которое мы можем иметь, будет равно 190.

Каждая строка требует добавления отдельной серии на график. Это означает, что нам нужно добавить 190 серий данных только для 20 человек. И это удовлетворяет только одному типу линии (пунктирная или толстая). Если нам нужны разные линии в зависимости от типа отношений, нам нужно добавить еще 190 серий.

Это больно и смешно одновременно. К счастью, выход есть!

Мы можем использовать гораздо меньшее количество серий и по-прежнему строить один и тот же график.

Допустим, у нас есть 4 человека – A,B,C и D. Ради простоты, давайте предположим, что координаты этих 4-х участников следующие:

И скажем, A имеет отношения с B, C и D.

Это означает, что нам нужно нарисовать 3 линии, от A до B, от A до C и A до D.

Теперь, вместо того, чтобы поставить 3 серии для диаграммы, что если мы поставим одну длинную серию, которая выглядит следующим образом:

Это означает, что мы просто рисуем одну длинную линию от A до B, от A до C, от A до D. Договорились, что это не прямая линия, но точечные диаграммы Excel могут нарисовать любую линию, если вы предоставите ей набор координат.

Смотрите эту иллюстрацию, чтобы понять технику:

Векторная диаграмма токов и напряжений

Таким образом, вместо 190 рядов данных для диаграммы нам просто нужно 20 рядов.

На последнем графике мы имеем 40 + 2 + 1 ряд данных. Это потому что:

Как сгенерировать все 20 серий данных:

Это требует следующей логики:

Нам нужны формулы MOD и INDEX для выражения этой логики в Excel.

Как только все координаты линии будут рассчитаны, добавьте их к нашему точечному графику как новые ряды используя инструмент из дополнительного меню: «РАБОТА С ДИАГРАММАМИ»-«КОНСТРУКТОР»-«Выбрать данные» в окне «Выбор источника данных» используйте кнопку «Добавить» для добавления всех 43-х рядов.

Реализовывать создание такой лучевой диаграммы связей будем в 3 этапа:

Построение векторной диаграммы напряжений.

4.1 На комплексной плоскости строятся векторы фазных напряжений питающей сети А, В, С; соединив их концы, получают векторы линейных напряжений АВ, ВС, СА. Затем строятся векторы фазных напряжений нагрузки А нагр., В нагр., С нагр. Для их построения можно использовать обе формы записи комплексов токов и напряжений.

Например, вектор А нагр. строится по показательной форме следующим образом: от оси +1 под углом 6 10 , т.е. против часовой стрелки, откладывается отрезок длиной 6,96 см; по алгебраической форме его можно построить, отложив по оси +1 отрезок длиной 6,81 см, а по оси + j отрезок длиной 0,76 см, концы этих отрезков являются координатами конца вектора А нагр.

4.2 Т.к. линейные напряжения нагрузки заданы питающей сетью, для определения положения нейтрали нагрузки необходимо выполнить параллельный перенос векторов фазных напряжений нагрузки А нагр., В нагр., С нагр. так, чтобы их концы совпали с концами фазных напряжений питающей сети.

Точка 0, в которой окажутся их начала, есть нейтраль нагрузки. В этой точке находится конец вектора напряжения смещения нейтрали 0, его начало расположено в точке 0. Этот вектор можно также построить, используя данные таблицы 9.

Построение ВД напряжений и токов

В качестве примера построения ВД рассмотрим последовательную цепочку из сопротивления R, индуктивности L и конденсатора C. Схема приведена на рисунке ниже.

Векторная диаграмма токов и напряжений

Напряжения на элементах схемы — UR, UL, UC. Ток в цепи — i.

Напряжение на выходе U = UR + UL + UC.

Пускай в цепи протекает синусоидальный ток с частотой ω и с нулевым сдвигом фазы. Для ненулевого сдвига фазы ВД просто повернётся на этот начальный угол, а общий её вид не изменится. Амплитуды напряжений на каждом элементе в форме закона Ома:

|U|R = R* |i|

|U|L = 1/ωC*|i|

|U|С = ωL* |i|

Соответствующие этим амплитудам длины векторов наносятся на ВД. При этом каждый вектор наносится с учетом своего фазового сдвига. Суммарный вектор оказался равен U = UR + UL + UC, но это теперь доказано геометрически на диаграмме.

Модуль суммарного вектора равен длине гипотенузы в прямоугольном треугольнике со сторонами |U|R, (|U|L – |U|С). Воспользовавшись теоремой Пифагора, можно вычислить |U|:

|U|2 = UR2 + (UL – UC)2

Применив формулы, указанные выше, получим:

|U|2 = (i0 * R)2 + (i0 * ωL – i0/ ωC)2

Можно вынести за скобки i0 (амплитуда тока — длина вектора i), тогда:

|U|2 = i02 * (R2 + (ωL – 1/ ωC)2

Пользуясь последней формулой, можно вычислять амплитуду синусоидального напряжения. Полученные формулы справедливы для случая обратной задачи, когда требуется найти ток в цепи с известным источником напряжения.

Предыдущая
РазноеЭлектротехника для чайников. Как научиться разбираться в электрике: уроки для начинающих
Следующая
РазноеАвтоматический выключатель — от чего защищает и как он устроен

Векторные диаграммы и комплексное представление

Векторные диаграммы можно считать вариантом (и иллюстрацией) представления колебаний в виде комплексных чисел. При таком сопоставлении ось Ox соответствует оси действительных чисел, а ось Oy – оси чисто мнимых чисел (положительный единичный вектор вдоль которой есть мнимая единица).

Тогда вектор длиной A

, вращающийся в комплексной плоскости с постоянной угловой скоростьюω с начальным угломφ0 запишется как комплексное число

а его действительная часть

-есть гармоническое колебание с циклической частотой ω

и начальной фазойφ0 .

Популярные статьи  Как подключить розетку с заземлением

Хотя, как видно уже из вышесказанного, векторные диаграммы и комплексное представление колебаний теснейшим образом связаны и по сути представляют собой варианты или разные стороны одного и того же метода, они, тем не менее, обладают своими особенностями и могут применяться и по отдельности.

Метод векторных диаграмм может излагаться отдельно в курсах электротехники или элементарной физики, если по тем или иным причинам (обычно связанным с умеренным уровнем математической подготовки учащихся и недостатком времени) надо избежать использования комплексных чисел (в явном виде) вообще.

Метод комплексного представления (который при необходимости или желании может включать и графическое представление, что, правда, совершенно не обязательно и иногда излишне) вообще говоря более мощен, т.к. естественно включает в себя, например, составление и решение систем уравнений любой сложности, в то время как метод векторных диаграмм в чистом виде всё же ограничен задачами, подразумевающим суммирование, которое можно изобразить на одном чертеже.

Однако метод векторных диаграмм (в чистом виде или в качестве графической составляющей метода комплексного представления) – более нагляден, а значит в некоторых случаях потенциально более надежен (позволяет до некоторой степени избежать грубых случайных ошибок, которые могут встречаться при абстрактных алгебраических вычислениях) и позволяет в некоторых случаях достичь в каком-то смысле более глубокого понимания задачи.

Векторная диаграмма токов в цепи с конденсатором

Для определения действующей величины общего тока I методом векторного сложения построим векторную диаграмму согласно уравнению

Действующие величины составляющих тока:

Векторная диаграмма токов и напряжений

Первым на векторной диаграмме изображается вектор напряжения U (рис. 13.16, а), его направление совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза напряжения φa =0). Вектор IG совпадает по направлению с вектором U, а вектор ICнаправлен перпендикулярно вектору U с положительным углом. Из векторной диаграммы видно, что вектор общего напряжения отстает от вектора общего тока на угол φ, величина которого больше нуля, но меньше 90º. Вектор I является гипотенузой прямоугольного треугольника, катеты которого — составляющие его векторы IG и IC : При напряжении u = Umsinωt соответствии с векторной диаграммой уравнение тока

i = Imsin(ωt + φ)

4.1.ОСНОВНЫЕ ПОНЯТИЯ

Векторная диаграмма токов и напряжений

Oпределение: Трансформатором называется статический электромагнитный
аппарат, предназначенный для преобразования системы переменного тока
одних параметров в систему переменного тока с другими параметрами.

Векторная диаграмма токов и напряжений

Известно, что передача электроэнергии на дальние расстояния осуществляется
на высоком напряжении (220, 400, 500 кВ и более), благодаря чему значительно
уменьшаются потери энергии в линии (рис. 4.1.1).
Получить такое высокое напряжение непосредственно в генераторе невозможно,
поэтому в начале линии электропередачи устанавливают повышающие
трансформаторы,
а в конце линии устанавливают понижающие трансформаторы.
Таким образом, переменный ток по пути от электростанции до потребителя
подвергается трех-, а иногда и четырехкратному трансформированию.
В зависимости от назначения трансформаторы разделяются на силовые и
специальные. Силовые трансформаторы используются в линиях электропередачи
и распределения электроэнергии.К специальным трансформаторам относятся: печные, выпрямительные,
сварочные, автотрансформаторы, измерительные, трансформаторы
для преобразования частоты и т.д.
Трансформаторы разделяются на однофазные и многофазные, из которых
наибольшее применение имеют трехфазные.
Кроме того, трансформаторы могут быть двухобмоточными (если они имеют
по две обмотки) или многообмоточными (если они имеют более двух обмоток).
В зависимости от способа охлаждения трансформаторы разделяются на
масляные и сухие.

Canva

Сервис для графического дизайна, в котором можно построить диаграмму из широкого выбора бесплатных дизайнерских шаблонов. Если выбрать понравившийся макет, заменить надписи и цвета, то за 10-15 минут вы получите готовую диаграмму — из необработанных данных будет наглядная и легкая для понимания картинка.

В Canva доступно более 20 профессиональных типов графиков на выбор: гистограммы для сравнения данных по категориям, линейные, круговые и кольцевые диаграммы, Т-диаграмма, диаграмма Венна и с областями.

Векторная диаграмма токов и напряжений

Особенности Canva:

  • Широкий выбор бесплатных шаблонов для создания диаграммы.
  • Более 20 профессиональных типов графиков на выбор.
  • Создание диаграммы за 5 шагов.
  • Возможность вставить диаграмму в презентацию или отчет.

Построение векторной диаграммы напряжений и токов

Последовательное и параллельное соединение аккумуляторов

Для изучения технологии выберем однофазный источник синусоидального напряжения (U). Ток изменяется по формуле I=Im*cos w*t. Подключенная цепь содержит последовательно подключенные компоненты со следующими значениями:

  • резистор: Ur=Im*R*cos w*t;
  • конденсатор: Uc=Im*Rc*cos (w*t-π/2), Rc=1/w*C;
  • катушка: UL= Im*RL*cos(w*t+π/2), RL=w*L.

При прохождении по цепи переменного тока на реактивных элементах будет соответствующий сдвиг фаз. Чтобы построить вектора правильно, рассчитывают амплитуды и учитывают изменение направлений. Ниже приведена последовательность создания графики вручную.

Векторная диаграмма токов и напряжений
Диаграмма напряжений и токов на отдельных элементах

Далее с применением элементарных правил геометрии проверяют взаимное влияние векторов.

Векторная диаграмма токов и напряжений
Решение векторного уравнения

На первом рисунке приведен результат сложения двух векторов при условии, когда Uc меньше UL. Добавив значение на сопротивление, получим результирующее напряжение Um. На третьей иллюстрации отмечен общий фазовый сдвиг.

Векторная диаграмма токов и напряжений
Векторное отображение процессов в параллельном колебательном контуре, резонанс напряжений

В топографической диаграмме начало координат совмещают с так называемой точкой «нулевого потенциала». Такое решение упрощает изучение отдельных участков сложных схем.

Векторная диаграмма токов и напряжений
Специализированный редактор онлайн

В интернете можно найти программу для построения векторных диаграмм в режиме online.

Как сделать лучевую векторную диаграмму связей в Excel

Векторная диаграмма токов и напряжений

Сначала взглянем на то, что мы пытаемся построить и визуально оценим объем работы. Выглядит интересно? Тогда читайте дальше, чтобы узнать, как это создать.

Чтобы создать лучевую диаграмму в Excel для визуального анализа взаимоотношений в сети, нам нужно сначала понять ее различные составляющие.

Как видите, диаграмма содержит следующие части:

  1. Набор точек, каждая из которых представляет одну заинтересованную сторону – участники сети.
  2. Набор сероватых толстых сплошных и тонких пунктирных линий, представляющих все отношения между людьми. Сплошные – сильные связи (например, друзья), пунктирные – слабые связи (знакомые).
  3. Набор зеленых толстых и синих пунктирных линий, представляющих отношения для выбранного конкретного участника сетевой группы.
  4. Срез для выбора анализа участника – как панель управления лучевой диаграммой.
  5. Табличка со сводной статистикой выбранного человека.
Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: