Вихревые токи

Что такое вихревые токи?

Электричество окружает нас не только на производстве, но и в быту. Человек может даже не знать, что такое вихревые токи, но с работой, ими совершаемой, ежедневно сталкиваться. Например, люди давно привыкли включать свет простым нажатием клавиши выключателя, не задумываясь о происходящих при этом процессах. Так и случилось в данном случае. Поэтому чтобы понять, что же скрывается под термином «вихревые токи Фуко» и определиться с механизмом их возникновения, необходимо вспомнить свойства электрического тока. Но сначала ответим на вопрос «почему именно Фуко»?

Впервые вихревые токи были упомянуты в трудах французского физика Араго Д. Ф

Он обратил внимание на странное поведение медного диска, над которым располагалась вращающаяся намагниченная стрелка. Без видимых причин диск начинал вращаться вместе с вращением стрелки

В то время (1824 г.) объяснить такое поведение еще не могли, поэтому феномен получил название «явление Араго». Спустя несколько лет другой ученый – М. Фарадей, применив к явлению Араго открытый им закон электромагнитной индукции, пришел к выводу, что в данном случае движение диска легко объяснить с точки зрения упомянутого закона. Согласно предложенному объяснению, вращающееся магнитное поле воздействует на атомы проводника (медного диска) и вызывает появление направленного движения заряженных (поляризованных) частиц в структуре. Одно из свойств электрического тока состоит в том, что вокруг проводника всегда существует магнитное поле. Нетрудно догадаться, что и вихревые токи создают свое поле, вступающее во взаимодействие с основным, их порождающим. Слово «вихревые» характеризует способ распространения таких токов в проводнике: их направления закольцованы. Основываясь на работах Араго и Фарадея, серьезно вихревые токи изучал физик Фуко. Отсюда и полученное название.

Эти токи мало чем отличаются от индукционных, вырабатываемых генераторами. Если есть вихревое магнитное поле (переменное, вращающееся) и находящийся рядом проводник, то в нем благодаря действию электромагнитных полей наводятся токи. Чем больше и массивнее проводник, тем выше действующее значение создающихся токов. Причем, вихревые токи всегда создают такое магнитное поле, которое противится изменению потока. С ростом тока-первопричины возрастает направленная встречно ЭДС, а при снижении, наоборот, поле вихревых токов поддерживает основной поток. Вышесказанное следует из закона Ленца.

Однозначно нельзя сказать, полезны или вредны вихревые токи: в некоторых случаях они расцениваются как паразитные и используются различные технологические решения для их уменьшения, в других же, напротив, востребованными оказываются сами свойства таких токов. Каждый любознательный мальчишка однажды разбирал выброшенный трансформатор. Сердечник (основа, на которой намотаны витки обмотки) всегда выполнен не цельным, а набирается из большого количества тонких пластин электротехнической стали (он называется шихтованным). Все составляющие конструкцию пластины покрываются изолирующим лаком и запекаются для надежного соединения. Иногда сердечник дополнительно стягивается изолированной шпилькой. Такое усложнение конструкции вынужденное: оно необходимо для существенного снижения вихревых токов в сердечнике. Ведь, как уже было сказано, чем менее массивен проводник, тем большим сопротивлением электрическому току он обладает.

В других случаях некоторые свойства вихревых токов оказываются востребованными. Например, работа индукционных сталеплавильных печей основана на нагревающем массивный проводник действии вихревых токов, наведенных специальным генератором. Кроме того, их используют для определения наличия незаметных деффектов в структуре металла.

fb.ru‏>

Открытие вихревых токов

По историческим данным, впервые это явление обнаружил в начале 19 века французский исследователь Д. Араго. Специалистам известен его наглядный опыт. Вращение намагниченной стрелкой приводит в движение тонкий диск из меди, расположенный на небольшом расстоянии сверху. Природу явления раскрыл М. Фарадей, объяснивший представленный простой пример перемещения взаимодействием поля и образованных в проводнике токов. Они получили специфическое название по фамилии ученого. Фуко обнаружил нагрев тел при достаточно сильном энергетическом потенциале источника переменного тока.

Применение

Нашли вихревые токи применение в электромагнитной индукции. Они используются для того, чтобы тормозить вращающиеся массивные детали. Благодаря магнитоиндукционному торможению они также применяются, чтобы успокоить подвижные части электроизмерительных приборов, в частности, чтобы создать противодействующий момент и притормозить подвижную часть электросчетчиков.

Также используются они в магнитном тормозном диске на электрическом счетчике. В ряде случаев применяются в технологических операциях, которые невозможны без применения высоких частот. К примеру, при откачке воздуха из вакуумных приборов и баллонов с газом. Кроме того, они нужны, чтобы полностью обезгаживать арматуру в высокочастотном генераторе.

Вихревые токи
Применение в проводниках

Принципы вихревых токов

Для детального изучения процессов можно рассмотреть действие полей при подключении к источнику типовой катушки индукции. Переменный ток в проводнике образует силовые линии поля. Напряженность создает разницу потенциалов в соседних петлях. Движение электронов формирует вихревые токи. Они движутся по траекториям наименьшего сопротивления, которое изменяется при наличии в изделиях примесей, трещин, полостей и других дефектов.

Закон Ома

Вихревые токи – это направленное движение электронов в проводнике. Поэтому рассматриваемые явления вполне могут быть описаны базовыми физическими формулами и определениями.

Сила тока рассчитывается по закону Ома:

I = (-1/R) * (dФ/dt), где:

  • R – электрическое сопротивление;
  • Ф – магнитный поток;
  • dt – интервал времени.

Понятно, что для практических вычислений сложнее всего выяснить значение проводимости. Кроме отмеченных выше неравномерностей пути прохождения тока (различия проводника), траектория меняется под воздействием переменного поля.

Индуктивность

Следует подчеркнуть проницаемость проводника силовыми линиями электромагнитного поля. Такое воздействие при увеличении тока источника питания интенсифицирует вихревые эффекты в контрольном образце, установленном на небольшом расстоянии. Амплитуда наведенных токов и фаза определяются нагрузкой и проводимостью катушки индукции. Как и в предыдущем примере, разрывы и другие дефекты проводящего участка оказывают существенное влияние на рабочие электрические характеристики конструкции.

Магнитные поля

Зависимость от параметров материалов показана на рисунке. Цифрами отмечены:

  1. пара или диамагнетики;
  2. ферриты;
  3. железо.

Вихревые токи
Как будут возникать токи в разных образцах при равных общих условиях

Дефектоскопия

Рассмотренные недостатки можно преобразовать в достоинства. По изменению вихревых токов определяют наличие дефектов при сканировании контрольных образцов. При создании измерительных приборов учитывают следующие факторы:

  • проводимость определяет силу и путь прохождения токов;
  • ровные поверхности исследовать проще;
  • вихревые процессы активизируется при уменьшении рабочей области.

Обнаружение контура дефектоскопом

С учетом целевого назначения корректируют конструкцию и размещение датчиков. Как правило, катушку устанавливают ближе к месту измерения. Корректируют форму изделия для лучшего соответствия объекту обследования.

Уменьшение вихревых токов

Чтобы успешно бороться с негативными проявлениями вихревых эффектов в электроэнергетике и других областях, пользуются отмеченными особенностями. В частности, увеличивают сопротивление проводников добавлением кремниевых и других присадок. Наборы из пластин размещают параллельно вектору магнитного потока. Обеспечивают надежную изоляцию элементов конструкции.

Токи Фуко

Определение 1

Токами Фуко или же вихревыми токами называют обладающие индукционной природой токи, которые возникают в массивных проводниках, находящихся в переменном магнитном поле.

Замкнутые цепи вихревых токов зарождаются в глубине самого проводника. Значение электросопротивления массивного проводника представляет из себя довольно малую величину, соответственно, токи Фуко могут приобретать большие значения.

Форма и свойства материала проводника, направление переменного магнитного поля и скорость изменения магнитного потока являются величинами, от которых зависит сила вихревых токов. Распределение токов Фуко в проводнике может быть крайне сложным.

Количество тепла, которое излучается за 1с токами Фуко пропорционально квадрату частоты изменения магнитного поля. Исходя из закона Ленца, можно заявить, что токи Фуко протекают по таким направлениям, чтобы своим воздействием устранить вызывающую их причину.

Таким образом, если проводник находится в движении в области магнитного поля, то он должен быть подвержен вызванному взаимодействием токов Фуко и магнитного поля сильному торможению.

Пример 1

Рассмотрим в качестве примера ситуацию с возникновением оков Фуко. Медный диск диаметром 5 см и толщиной 6мм падает в узком зазоре между полюсами электромагнита. Если электромагнит отключен, диск с высокой скоростью падает. Включим электромагнит. Поле должно быть довольно большим, около Т 0,5 Тл. Падение диска замедлится и будет похоже на движение в крайне вязкой среде.

Использование токов Фуко

Токи Фуко занимают важное место в процессе работы приводящегося в движение вращательного типа магнитным полем ротора асинхронного двигателя. Без них функционирование двигателя попросту будет невозможным. Токи Фуко применяют при демпфировании подвижных частей гальванометров, сейсмографов и целого списка иных устройств

Токи Фуко применяют при демпфировании подвижных частей гальванометров, сейсмографов и целого списка иных устройств.

Так, на подвижную часть прибора устанавливается пластинка — проводник в виде сектора. Ее вводят в промежуток между полюсами сильного постоянного магнита. При движении пластинки, в ней возникают токи Фуко, что провоцирует торможение системы. Стоит учитывать, что торможение проявляется только в случае движения секторообразного проводника.

Соответственно, успокаивающий прибор такого рода не препятствует точному достижению системы состояния равновесия.

Внутри катушки распологают проводящее тело, в котором возникают разогревающие вещество до состояния плавления вихревые токи большой интенсивности. Так происходит плавление металлов в условиях вакуума, позволяющее получать материалы высокой чистоты.

При применении токов Фуко с целью обезгаживания производят прогрев внутренних металлических элементов вакуумных конструкций.

Проблемы, которые вызывают вихревые токи. Скин — эффект

Токи Фуко не всегда представляют собой полезное явление.

Определение 2

Вихревые токи — это токи проводимости, из-за чего они рассеивают часть энергии в виде джоулевой теплоты.

Такая энергия, к примеру, в роторе асинхронного двигателя, обычно изготавливаемого из ферромагнетиков, разогревает сердечники, чем ухудшает их характеристики. Чтобы избежать данного явления, сердечники производят в виде тонких пластин, которые отделяются тонкими слоями изолятора.

Пластины устанавливают таким образом, чтобы токи Фуко были направлены поперек них. В случае малой толщины пластин вихревые токи обладают небольшой объемной плотностью.

С появлением ферритов и веществ с большим магнитосопротивлением появилась возможность изготавливать сердечники сплошными.

Определение 3

Вихревые токи наводятся в проводниках, в которых протекают переменные токи. Причем токи Фуко всегда направлены таким образом, что ослабляют ток внутри провода и усиливают его около поверхности. Соответственно, изменяющийся с высокой частотой ток распределен по сечению провода неравномерно. Данное явление называется скин — эффектом (поверхностным эффектом).

По причине такого явления внутренняя часть проводника становится бесполезной и в цепях с большой частотой в качестве проводников применяют трубки.

Скин — эффект может быть использован для разогрева поверхностного слоя металла, что позволяет применять данное явление в процессе закалки металла.

Также стоит отметить, что, изменяя частоту поля, можно производить закалку на любой необходимой глубине.

Определение 4

RwR0=1+k43, при k

Приложения

Торможение

Вихретоковый тормоз японского скоростного поезда Синкансэн .

Схема действующего вихревого тормозного диска.

Первый патент на электромагнитный замедлитель был подан Штекелем в 1903 году . Рауль Саразин провел в году первое практическое применение на автомобиле замедлителя, использующего принцип вихревых токов.

Вихретоковые тормозные системы используются, в частности, на грузовых автомобилях и автобусах под названием «замедлитель» или под торговым наименованием Telma .

Они состоят из неподвижных электромагнитов ( статора ), создающих вихревые токи в токопроводящих дисках ( роторе ), приводимых колесами. Когда электромагниты находятся под напряжением, вихревые токи, индуцируемые в дисках, создают силы Лапласа, противодействующие движению, тем самым создавая тормозной момент.

В отличие от обычных тормозов, которые рассеивают энергию за счет трения, электромагнитное торможение работает бесконтактно и, следовательно, без износа накладок. Эти тормоза требуют небольшой регулировки. Хотя энергия торможения остается рассеянной в виде тепла (за счет эффекта Джоуля ), они менее чувствительны к нагреву. Поэтому они являются обязательными для тяжелых транспортных средств для обеспечения длительного торможения, особенно в горах или при частых остановках. Торможение, вызванное скоростью дисков, ни при каких обстоятельствах не позволяет остановить автомобиль, пока он не остановится полностью. Вот почему они работают только как дополнение к обычным тормозам.

В железных дорогах, высокоскоростной поезд ICE 3 из Deutsche Bahn использует вихретоковую тормозную систему в качестве тормозной системы на некоторых новых линиях и как система экстренного торможения в другом месте.

Они могут быть обвинен за того , что энергия рассеивается за счет эффекта Джоуля в виде тепла и , следовательно , в чистом потери, в отличие от рекуперативного торможения в гибридных транспортных средств , которые используют его в качестве хранимого электричества.

Нагреватель

Индукционный нагрев вызывается вихревыми токами, возникающими в нагреваемой детали. Таким образом, этот тип нагрева предназначен для электропроводящих материалов . Например, он используется в индукционных плитах или в металлургии, где индукционные печи могут нагревать металлические слитки до температуры плавления .

Пайка

В случае индукционной пайки паяемые элементы помещаются в мощное электромагнитное поле для нагрева деталей, а также присадочного металла.

Вихретоковый сепаратор

Вихревые токи используются для сортировки и разделения разнородных сыпучих материалов.

Первый сепаратор был изготовлен в 1984 году термодинамиком Хубертом Жюйе, изобретателем процесса, от имени стекольного завода BSN (ныне Оуэнс-Иллинойс ) в Уинглсе ( Па-де-Кале ) по переработке стекла, чтобы отделять цветные металлы (в том числе капсулы) от стекла.

В настоящее время во всем мире эксплуатируется большое количество сепараторов, в основном в сферах переработки и переработки полезных ископаемых .

Другие приложения

Старофранцузский счетчик электроэнергии ( EDF ).

Вихревые токи используются для:

  • подсчитать потребление электроэнергии, в старых ERDF (зубчатое колесо) метров ;
  • сделать бесконтактные датчики расстояния. Обычно они состоят из катушки, возбуждаемой на высокой частоте (от 200  кГц до 2  МГц ); близость проводящей части изменяет ее сопротивление; измерение этого импеданса позволяет определить расстояние от измеряемой части;
  • неразрушающий контроль , например , для обнаружения трещин в металлических деталях , такие как железнодорожные рельсы или металлические части летательного аппарата с учетом повторных напряжений. В случае внутреннего повреждения вихревые токи изменяются, что приводит к изменению индуцированного магнитного поля. Примером может служить контроль качества изготовления клинков спортивного фехтовального оружия ;
  • отображение скорости транспортного средства с помощью тахометра  : магнит подключен к выходу коробки передач и окружен трубкой из проводящего металла, идущей от указанной коробки передач к измерителю, на котором закреплена стрелка. Трубка, вращающаяся вокруг своей оси, удерживается спиральной пружиной, которая приводит иглу в нулевое положение. Чем быстрее вращается колесо, тем больше сила, прилагаемая к вращению трубки, и тем дальше стрелка счетчика перемещается от своего исходного положения;
  • работа некоторых велосипедных динамо-машин : магнит приводится во вращение под действием вихревых токов в ободе колеса. Затем этот магнит позволяет генерировать энергию для питания света. В отличие от традиционных динамо-машин, магнит приводится в движение бесконтактно.

Способы уменьшения токов Фуко

Урок № 33. Вихревые токи.

В электрических аппаратах, приборах и машинах металлические детали иногда движутся в магнитном поле или неподвижные металлические детали пересекаются силовыми линиями меняющегося по величине магнитного поля. В этих металлических деталях индуктируется ЭДС самоиндукции.

Под действием этих э. д. с. в массе металлической детали протекают вихревые токи (токи Фуко)

, которые замыкаются в массе, образуя вихревые контуры токов.

Вихревыми токами (также токами Фуко) называются электрические токи, возникающие вследствие электромагнитной индукции в проводящей среде (обычно в металле) при изменении пронизывающего ее магнитного потока.

Вихревые токи порождают свои собственные магнитные потоки, которые, по правилу Ленца, противодействуют магнитному потоку катушки и ослабляют его. Кроме того, они вызывают нагрев сердечника, что является бесполезной тратой энергии.

Пусть имеется сердечник из металлического материала. Поместим на этот сердечник катушку, по которой пропустим переменный ток. Вокруг катушки окажется переменный магнитный ток, пересекающий сердечник. При этом в сердечнике станет наводиться индуцированная ЭДС, которая, в свою очередь, вызывает в сердечнике токи, называемые вихревыми. Эти вихревые токи нагревают сердечник. Так как электрическое сопротивление сердечника невелико, то наводимые в сердечниках ндуцированные токи могут оказываться достаточно большими, а нагрев сердечника — значительным.

Возниконвение токов Фуко (вихревых токов).

Впервые вихревые токи были обнаружены французским учёным Д.Ф. Араго (1786 — 1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции.

Вихревые токи были подробно исследованы французским физиком Фуко (1819 — 1868) и названы его именем. Он назвал явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

В качестве примера на рисунке показаны вихревые токи, индуктируемые в массивном сердечнике, помещенном в катушку, обтекаемую переменным током. Переменное магнитное поле индуктирует токи, которые замыкаются по путям, лежащим в плоскостях, перпендикулярных направлению поля.

Вихревые токи

Вихревые токи: а — в массивном сердечнике, б — в пластинчатом сердечнике.

Способы уменьшения токов Фуко

Мощность, затрачиваемая на нагрев сердечника вихревыми токами, бесполезно снижает КПД технических устройств электромагнитного типа.

Чтобы уменьшить мощность вихревых токов, увеличивают электрическое сопротивление магнитопровода, для этого сердечники набирают из отдельных тонких (0,1- 0,5 мм) пластин, изолированных друг от друга с помощью специального лака или окалины.

Магнитопроводы всех машин и аппаратов переменного тока и сердечники якорей машин постоянного тока собирают из изолированных друг от друга лаком или поверхностной непроводящей пленкой (фосфатированных) пластин, штампованных из листовой электротехнической стали. Плоскость пластин должна быть параллельна направлению магнитного потока.

При таком делении сечения сердечника магнитопровода вихревые токи существенно ослабляются, так как уменьшаются магнитные потоки, которыми сцепляются контуры вихревых токов, а следовательно, понижаются и индуктируемые этими потоками э. д. с, создающие вихревые токи.

В материал сердечника также вводят специальные добавки, также увеличивающие его электрическое сопротивление. Для увеличения электрического сопротивления ферромагнетика электротехническую сталь приготовляют с присадкой кремния.

Шихтованный магнитопровод трансформатора

Сердечники некоторых катушек (бобин) набирают из кусков отожженной железной проволоки. Полоски железа располагают параллельно линиям магнитного потока. Вихревые же токи, протекающие в плоскостях, перпендикулярных направлению магнитного потока, ограничиваются изолирующими прокладками. Для магнитопроводов приборов и устройств, работающих на высокой частоте, применяют магнетодиэлектрики. Чтобы снизить вихревые токи в проводах, последние изготавливают в виде жгута из отдельных жил, изолированных друг от друга.

Лицендрат — это система переплетенных медных проводов, в которой каждая жила изолирована от соседних. Лицендрат предназначен для использования на высокочастотных токах для предотвращения возникновения паразитных токов и токов Фуко.

Источник

Открытие вихревых токов

Вихревые электрические токи были открыты французским ученым Араго Д.Ф. Ученый экспериментировал с медным диском и стрелкой, которая была намагничена.

Она крутилась вокруг диска, в какой-то момент времени он начал повторять движения стрелки. Тогдашние ученые объяснение явлению не нашли – это странное движение назвали «явление Араго». Загадка ждала своего времени.

Через несколько лет вопросом заинтересовался Максвелл Фарадей, на тот момент, открывший свой знаменитый закон электромагнитной индукции.

Согласно закону, М. Фарадей выдвинул предположение, что движимое магнитное поле имеет влияние на атомную металлическую решетку медного проводника.

Электрический ток, возникший в результате направленного движения электронов, всегда создает магнитное поле по всему периметру проводника. Детально описал вихревые токи, опираясь на работы Араго и Фарадея – физик-экспериментатор Фуко, откуда они и получили свое второе название.

Какова природа вихревых токов?

Замкнутые циклические токи способны возникать в проводниках, в тех случаях, когда магнитное поле вокруг этих проводников не стабильно, то есть постоянно меняющееся во времени или динамично вращающееся.

Таким образом, сила вихревого тока прямо зависит от скорости изменения магнитного потока, пронзающего проводник. Известно, что электроны в проводнике двигаются линейно вследствие разницы потенциалов, таким образом электрический ток прямо направлен.

Токи Фуко проявляют себя иначе и замыкаются прямо в теле проводника, образуя вихреобразные цикличные контуры. Они способны взаимодействовать с магнитным полем, вследствие действия которого они и возникли. (рис 1)

Вихревые токиВихревые токи в проводнике

На рисунке можно хорошо рассмотреть, как интересующие нас токи увеличиваются при повышении уровня индукции (показаны пунктирными направляющими) в середине катушки, которая подключена к переменному току.

Исследуя вихревые токи Фуко русский ученый Ленц сделал вывод, что собственное магнитное поле этих токов не дает магнитному потоку, причиной коих они и являются, изменится. Характер направления силовых линий вихревого электрического тока совпадает с вектором направления индукционного тока.

Значение и применение

В момент движения тела в создаваемых магнитных полях токи Фуко являются причиной физического замедления тела в этих полях. Эта способность давно реализована в конструкции бытового электросчетчика. Суть заключается в том, что замедляется алюминиевый диск, вращающийся под действием магнита. (рис2)

Вихревые токи

Рисунок изображает диск счетчика электрической энергии, где сплошной стрелкой указано направление вращения самого диска, а пунктирными – вихревые потоки

Вихревые токи
Эти же взаимодействия помогли реализовать идею создания насоса для перекачки расплавленных металлов. Токи Фуко провоцируют возникновение скин — эффекта. В результате их действия КПД проводника уменьшается, поскольку посредине сечения проводника ток фактические отсутствует, а преобладает на его периферии.

Вихревые токи

Для уменьшения потерь электроэнергии, особенно при передаче на длительные дистанции, используют многоканальный кабель, каждая жила в котором имеет свою изоляцию. Вихревые токи, а именно индукционные печи, сконструированные на их основе, нашли широкое применение в металлургии.

Вихревые токи

Их использую для плавки металлов, их перекачивания и закалки поверхности. А также свойства вихревых токов используются для замедления и остановки металлического диска в индукционных тормозах. В современных вычислительных приборах и аппаратах токи Фуко способствуют замедлению движущихся частиц.

История открытия

Первое понятие о вихревых потоках было упомянуто в 1824 году физиком французского происхождения Д.Ф. Арго (1786-1853), который проводил ряд экспериментов с намагниченной стрелкой, крутящейся над диском из меди. В определенный момент он заметил, что без какого-либо дополнительного воздействия диск начинал крутиться вместе со стрелкой. Точного объяснения данного феномена физик дать не смог, но оно получило наименование «явление Арго».

Спустя некоторое время, Максвелл Фарадей, рассматривавший вихревые токи с точки зрения постулата, основанного на знаниях об электромагнитной индукции, который он же и открыл, сделал заключение, что электрическое поле, исходящее от вращающейся стрелки, оказывает прямое воздействие на атомное строение диска из меди, что и способствует образованию направленного движения заряженных частиц. Электроток способствует образованию электромагнитного поля вокруг медного диска.

Понятие вихревых токов

Более тщательно изучил, а также подробно описал в своих работах вихревые токи французский физик Жанн Фуко (1819-1868), впоследствии данное действие было названо в честь него и получило название актуальное в сегодняшние дни – токи Фуко. Эти токи схожи с индукционными токами, вырабатываемыми электрогенераторами. При наличии постоянного или временного магнитно-вихревого поля в непосредственной близости от проводника обязательно образуются токи Фуко: чем объемнее проводник, тем сильнее будет сила потоков тока.

Практическое применение вихревых токов

Применение и эксплуатация элегазовых выключателей

Прохождение сильного тока повышает энергетический потенциал молекулярной решетки, что сопровождается нагревом. Это явление объясняет возможность использования соответствующей технологии для бесконтактного повышения температуры проводящих материалов. Если приводить пример с индукционной варочной панелью, можно подчеркнуть следующие плюсы:

  • образование тепла в глубине дна посуды обеспечивает эффективный нагрев рабочей зоны;
  • температура на поверхности панели не повышается чрезмерно;
  • тепловое воздействие на продукты выполняется быстрее, по сравнению с аналогами (спиральные ТЭНы, газовые плиты).

Привести пример на основе опыта с вращением диска несложно. Этот же принцип реализован в конструкции электромеханического счетчика потребленной энергии. В данном случае вращение рабочего узла обеспечивается наведенными токами. Ускорение/ замедление соответствует изменению мощности в нагрузке.

Вихревые токи
При увеличении тока можно нагреть металлы (сплавы) до температуры плавления

При тщательном изучении тематических вопросов можно найти определенные минусы. Электромагнитный поток в цельном сердечнике трансформатора способен увеличить энергетические потери. По этой причине соответствующие детали создают из комплекта пластин, покрытых слоем диэлектрика. Эти элементы соединяют изолированным стержнем.

Как уменьшить действие токов Фуко

Действие вихревых токов необходимо снизить, поскольку мощности, бесполезно расходуемые для нагрева сердечника, приводят к снижению КПД электромагнитных устройств. С целью уменьшения этой мощности, в магнитопроводе необходимо увеличить сопротивление. Поэтому для набора сердечников используются отдельные тонкие пластины, толщиной от 0,1 до 0,5 мм. Изоляция пластин между собой осуществляется специальными лаками или окалиной.

Набор магнитопроводов для всей аппаратуры переменного тока и сердечников для устройств постоянного тока также осуществляется из пластин, изолированных между собой. Для их изготовления применяется штампованная листовая электротехническая сталь. Плоскости пластин размещаются параллельно с направлением магнитного потока. Таким образом, сечение сердечника оказывается разделенным, что приводит к ослаблению и уменьшению магнитных потоков. Соответственно, наблюдается снижение ЭДС, индуктируемых этими потоками. Именно они способствуют появлению вихревых токов. Практикуется ввод в материал сердечника специальных добавок, способствующих росту его электрического сопротивления.

В некоторых конструкциях катушек для набора сердечников используется отожженная железная проволока. Расположение железных полосок осуществляется параллельно с линиями магнитного потока. Ограничение вихревых токов, протекающих в перпендикулярных плоскостях с магнитным потоком, выполняется с помощью изолирующих прокладок. Снижение токов Фуко в проводах происходит следующим образом: в состав жгутов входят отдельные жилы, изолированные между собой.

Как определить в трансформаторе

Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.

Обратите внимание! Для их измерения используются изолированные стальные пластины. Вам это будет интересно Индуктивность катушки, её назначение, характеристики, формулы

Вам это будет интересно Индуктивность катушки, её назначение, характеристики, формулы

Вихревые токи
Определение в трансформаторе

Применение токов Фуко

Электрический ток – это?

Многие ученные разных времен считали и считают, что негативного воздействия от вихревых потоков куда больше, чем позитивного. Но тем не менее, человечество научилось применять токи Фуко во благо в различных областях жизнедеятельности.

Наиболее широкое применение они получили в промышленной и машиностроительной сферах. Так, на основе этого явления удалось создать насос для перекачки и закалки расплавленных металлов, а в металлургической и промышленной отраслях используются индукционные печи, которые в несколько раз превосходят аналогичные системы, работающие по другому принципу. Плавление и закалка различных металлов возможны только с применением этого явления. Вихревые потоки способствуют торможению и снижению скорости вращения металлических дисков в индукционных тормозах, без этого бы просто не функционировали скоростные поезда на магнитных подвесках. Также без вихревых потоков Фуко не обходятся современные вычислительные приборы и аппараты, вакуумные устройства, где необходима полная откачка воздуха и других газов, принцип работы современных трансформаторов возможен только благодаря применению в их конструкции вихревых потоков. Более того, оборудование, работающее на основе токов Фуко, обладает существенной экономичностью и хорошей производительностью.

Вихревые токи
Индукционный мотор, работающий на вихревых потоках

Таким образом, такое действие, как токи Фуко, – полезное, легко объяснимое и довольно понятное явление на сегодняшний день, представляет собой вихревые потоки, которые возникают под воздействием электромагнитной индукции в металлическом, а также любом другом проводнике. Вихревые токи Фуко многие ученые современности относят к удивительным явлениям в электротехнике, которые современное общество научилось использовать с пользой для себя, при необходимости доводя их до нужной мощности, уменьшая при надобности и направляя полученную энергию в правильное русло. Жанн Фуко был умным и одаренным человеком, который, помимо объяснения феномена вихревых потоков, сделал немало других важных открытий, одним из них является нагревание металлических объектов, вертящихся в магнитном потоке благодаря воздействию вихревого тока. Он первым дал вразумительное и достаточно понятное объяснения данного факта.

Вихревые токи
Применение токов Фуко для торможения дисков в индукционных тормозах

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: