Жидкие диэлектрики

Содержание

Физические свойства диэлектриков

При удельном сопротивлении материала равном меньше 10-5 Ом*м их можно отнести к проводникам. Если больше 108 Ом*м — к диэлектрикам. Возможны случаи, когда удельное сопротивление будет в разы больше сопротивления проводника. В интервале 10-5-108 Ом*м находится полупроводник. Металлический материал — отличный проводник электрического тока.

Жидкие диэлектрики

Из всей таблицы Менделеева только 25 элементов относятся к неметаллам, причём 12 из них, возможно, будут со свойствами полупроводника. Но, разумеется, кроме веществ таблицы, существует ещё множество сплавов, композиций или химических соединений со свойством проводника, полупроводника или диэлектрика. Исходя из этого, трудно провести определённую грань значений различных веществ с их сопротивлениями. Для примера, при пониженном температурном факторе полупроводник станет вести себя подобно диэлектрику.

Чем отличаются диэлектрики от проводников и полупроводников

Теоретическую разницу между этими тремя видами материалов можно представить, и я это сделаю, на рисунке ниже:

Рисунок красивый, знакомый со школьной скамьи, но что-то практическое из него не особо вытянешь. Однако, в этом графическом шедевре четко определена разница между проводником, полупроводником и диэлектриком.

И отличие это в величине энергетического барьера между валентной зоной и зоной проводимости.

В проводниках электроны находятся в валентной зоне, но не все, так как валентная зона — это самая внешняя граница. Точно, это как с мигрантами. Зона проводимости пуста, но рада гостям, так как у неё полно для них свободных рабочих мест в виде свободных энергетических зон. При воздействии внешнего электрического поля, крайние электроны приобретают энергию и перемещаются в свободные уровни зоны проводимости. Это движение мы еще называем электрическим током.

В диэлектриках и проводниках всё аналогично, за исключением того, что имеется “забор” — запрещенная зона. Эта зона расположена между валентной и зоной проводимости. Чем больше эта зона, тем больше энергии требуется для преодоления электронами этого расстояния. У диэлектриков величина зоны больше, чем у полупроводников. Этому есть даже условие: если дЭ>3Эв (электронвольт) — то это диэлектрик, в обратном случае дЭ

В данной статье речь далее пойдет только о диэлектриках. И раз уж мы чуть углубились в науку, то поговорим далее о свойствах и величинах, которые характеризуют эти электротехнические материалы в общем.

Хлорированные углеводороды

Их получают из разных углеводородов при замещении одного либо нескольких атомов водорода хлором. В качестве самого распространенного вида таких диэлектриков выступает хлорированный дифенил. Он обладает высокой вязкостью, имеет основные характеристики, соответствующие ГОСТу. Электрическая прочность этого изолятора выше иных неполярных нефтяных масел, поэтому при его использовании объем конденсатора уменьшается практически в два раза. Среди преимуществ хлорированных дифенилов выделим их негорючесть, а недостатками являются токсичность и высокая стоимость.

Среди недорогих отечественных материалов, обладающих отличными изоляционными характеристиками, выделим смесь изобутена и его изомеров (октол), получаемую в результате крекинга нефти.

Классификации изоляторов

Электроизоляторы различаются по своему происхождению и агрегатному состоянию. Что касается происхождения, то в качестве признаков выделяют принадлежность к органическим и неорганическим материалам, а также к натуральному и синтетическому сырью. К природным материалам можно отнести слюду, которая характеризуется прочностью, гибкостью и способностью к расщеплению. Это неорганический диэлектрик естественного происхождения. И напротив, в группе синтетических органических материалов можно отметить химические высокомолекулярные соединения. В готовом к использованию виде они предлагаются как пластмассы и эластомеры. Основные эксплуатационные различия определяет классификация электроизоляционных материалов по агрегатному состоянию. Выделяются твердые и жидкостные, а также газообразные диэлектрики.

Виды диэлектриков

У многих школьников или студентом возникает сильная путаница с классификацией диэлектриков. Они просто не понимают, какие есть группы и на что они делятся. Сейчас я попытаюсь вам понятно все объяснить, чтобы, прочитав один раз, вы поняли навсегда.

Классификация по агрегатному состоянию

Жидкие диэлектрики

По агрегатному состоянию выделяется три основных вида диэлектриков:

  • твердые – это стекло, пластик, керамика и подобные вещества. Они используются в специализированных станциях и заводах, позволяют ограничить распространение тока и сделать среду более безопасной для окружающих;
  • жидкие – это масла, спреи, дистиллированная вода, которые снабжаются в различных машинах и технологиях. Например, это трансформаторы, которые просто не могут работать без изоляторов;
  • газовые – к этому типу относятся исключительно азот, который чаще всего используют для того, чтобы понизить их температуру. Это позволяет обезопасить технику от сильного перегрева и возможного взрыва.

Классификация по происхождению

По происхождения изоляторы бывают органическими и неорганическими:

  • органические – это диэлектрики, которые добываются в окружающей среде и были созданные не под влиянием человека. Они используются крайне редко, из-за их малого количества свойств;
  • неорганические – эти изоляторы создаются самими людьми и чаще всего используются в производстве и деятельности. Они отлично останавливают ток и блокируют его распространение.

Аморфные диэлектрики. Какие они?

Чем особенны аморфные диэлектрики? Главное, что отличает их от других — это довольно рыхлая структура, а значит очень много пустот внутри и большое пространство, где ионы могут находится в состоянии равновесия. При этом, при переходе от одного равновесного состояния до другого энергия, расходуемая ионом будет всегда разной. В некоторых переходах ион не будет полностью высвобождаться от сдерживающих его сил, поэтому можно его условно охарактеризовать как наполовину связанный этими силами.

Такие переходы будут тратить очень небольшое количество энергии, и перемещаться ион при таких переходах сможет лишь на очень небольшое расстояние. В результате теплового перемещения такие переходы внутри аморфных тел будут встречаться гораздо чаще, ведь они требуют гораздо меньше энергии, чем другие.

Однако, небольшое количество ионов, которые содержат в себе большие запасы энергии, смогут таки преодолевать связывающие их силы и будут перемещаться на сравнительно большие расстояния.

Виды и типы диэлектриков

Классификация диэлектриков довольна обширная. Тут встречаются жидкие, твердые и газообразные вещества. Далее они делятся по определенным признакам. Ниже приведена условная классификация диэлектриков с примерами в форме списка.

  • газообразные
    • — полярные
    • — неполярные (воздух, элегаз)
  • жидкие
    • — полярные (вода, аммиак)

      — жидкие кристаллы

    • — неполярные (бензол, трансформаторное масло)
  • твердые
    • — центросимментричные
      • — аморфные
        • — смолы, битумы (эпоксидная смола)
        • — стекла
        • — неупорядоченные полимеры
      • — поликристаллы
        • — нерегулярные кристаллы
        • — керамика
        • — упорядоченные полимеры
        • — ситаллы
      • — монокристаллы
        • — молекулярные
        • — ковалентные
        • — ионные
          • — параэлектрики смещения
          • — параэлектрики „порядок-беспорядок”
        • — дипольные
      • — нецентросимментричные
        • — монокристаллы
          • — пироэлектрики
            • — сегнетоэлектрики смещения
            • — сегнетоэлектрики „порядок-беспорядок”
            • — линейные пироэлектрики
          • — пьезоэлектрики
            • — с водородными связями
            • — ковалентные
            • — ионные
        • — текстуры
          • — электронных дефектов
          • — ионных дефектов
          • — полярных молекул
          • — макродиполей
          • — сегнетоэлектрических доменов
          • — кристаллов в матрице

Если брать жидкие и газообразные диэлектрики, то основная классификация лежит в вопросе полярности. Разница в симметричности молекул. В полярных молекулы несимметричны, в неполярных — симметричны. Несимметричные молекулы называются диполями. В полярных жидкостях проводимость настолько велика, что их невозможно использовать в качестве изоляционных веществ. Поэтому для этих целей используют неполярные, тоже трансформаторное масло. А наличие полярных примесей даже в сотых долях значительно снижает планку пробоя и негативно сказывается на изоляционных свойствах неполярных диэлектриков.

кристаллы представляют собой нечто среднее между жидкостью и кристаллом, как следует из названия.

Еще популярным вопросом о свойствах и применении жидких диэлектриков будет следующий: вода — диэлектрик или проводник? В чистой дистиллированной воде отсутствуют примеси, которые могли бы вызвать протекание тока. Чистую воду можно создать в лабораторных, промышленных условиях. Эти условия сложны и трудновыполнимы для обычного человека. Есть простой способ проверить проводит ли дистиллированная вода ток.

Жидкие диэлектрики

Создать электрическую цепь (источник тока — провод — вода — провод — лампочка — другой провод — источник тока), в которой одним из участков для протекания тока будет сосуд с дистиллированной водой. При включении схемы в работу, лампочка не загорится — следовательно ток не проходит. Ну а если загорится, значит вода с примесями.

Поэтому любая вода, которую мы встречаем: из крана, в озере, в ванной — будет проводником за счет примесей, которые создают возможность для протекания тока. Не купайтесь в грозу, не работайте влажными руками с электричеством. Хотя чистая дистиллированная вода — полярный диэлектрик.

Для твердых диэлектриков классификация в основном лежит в вопросе активности и пассивности что ли. Если свойства постоянны, то диэлектрик используют в качестве изоляционного материала, то есть он пассивен. Если свойства меняются, в зависимости от внешних воздействий (тепло, давление), то этот диэлектрик применяют для других целей. Бумага является диэлектриком, если вода пропитана водой — то ток проводится и она проводник, если бумага пропитана трансформаторным маслом — то это диэлектрик.

Фольгой называют тонкую металлическую пластину, металл — как известно является проводником. В продаже имеется например ПВХ-фольга, тут слово фольга для наглядности, а слово ПВХ — для понимания смысла — ведь ПВХ это диэлектрик. Хотя в википедии — фольгой называется тонкий лист металла.

Аморфные жидкости — это и смола, и стекло, и битум, и воск. При повышении температуры этот диэлектрик тает, это замороженные вещества — это дикие определения, которые характеризуют лишь одну грань правды.

Поликристаллы — это, как бы сросшиеся кристаллы, объединенные в один кристалл. Например, соль.

Монокристалл — это цельный кристалл, в отличие от вышеупомянутого поликристалла имеющий непрерывную кристаллическую решетку.

Пьезоэлектрики — диэлектрики, у которых при механическом воздействии (растяжении-сжатии), возникает процесс ионизации. Применяется в зажигалках, детонаторах, УЗИ-обследовании.

Пироэлектрики — при изменении температуры в этих диэлектриках происходит самопроизвольная поляризация. Также она происходит при механическом воздействии, то есть пироэлектрики являются еще и пьезоэлектриками, но не наоборот. Примерами служат янтарь и турмалин.

Кристаллическая решетка поможет разобраться

Сейчас в познании электрических диэлектриков нам поможет разобраться кристаллическая решетка. Для того, чтобы термины не казались нам непонятными, давайте их освежим в своей голове. Кристаллическая решетка — это группа таких точек, которые образуются в веществах (а точнее в кристаллах) под воздействием сдвигов (они, кстати, могут происходить из-за воздействия электрического поля. Отлично, вспомнили. Давайте теперь разбираться.

Как мы помним, в атоме, который в данный момент изолирован, энергия электронов не может принимать какие угодно значения. В таком состоянии энергия будет принимать четко обозначенные значение W1, W2, W3 и т.д. Вот, взгляните на график:

Жидкие диэлектрики

Конечно же, каждый из этих уровней будет немного смещен после того, как атомы войдут в состав твердой кристаллической решетки. В итоге зона, в которой будет концентрировать вся энергия будет общей для всей решетки.

Итак, в кристаллической решетке энергия электронов лежит в пределах четко определенных зон и все значения, которые находятся вне этой зоны, запрещены. Это мы поняли. Двигаемся дальше. По принципу Паули каждая зона может вместить в себя ограниченное количество электронов. Сначала электроны будут заполнять нижние уровни, а когда эти ряды заполняться полностью, они будут заполнять верхние ряды.

И вот теперь ключевая мысль, которую нужно понять, чтобы разобраться в том, почему те или иные вещества проводят электрический ток. Раз электроны постепенно заполняют ряды от нижнего к верхнему, то на самом верхнем ряду они либо заполнят этот ряд полностью, либо только частично.

Так вот, при частичном заполнении ряда электроны смогут свободно по нему перемещаться, а значит и будут проводить ток. Бинго! А вот в случае, если электроны все-таки заполнят верхний уровень, то при воздействии электрического поля никаких сдвигов не произойдет и, соответственно, такое вещество можно назвать диэлектриком.

Очень похожая ситуация происходит и с аморфными твердыми телами (ну например янтарь или полиэтилен). По определению, у таких веществ расположение атомов очень случайно, а зоны, общие для всего кристалла просто не могут существовать, а значит они тоже электрические диэлектрики.

Поговорим о поляризации

Следующий важный термин, о котором пришло время узнать — это поляризация диэлектриков. Дело в том, что процессы смещения зарядов диэлектрика протекают с разной скоростью. Как мы уже сказали ранее, для связанных зарядов время смещения гораздо меньше, а вот другие процессы протекают очень медленно.

При смещении зарядов диэлектрика образуется еще одно поле. Оно как раз и делает главное (внешнее) поле слабее. Как раз явление образования нового поля и называется поляризацией диэлектрика. Теперь давайте углубимся в этот процесс, ведь тут очень много интересных подробностей.

Жидкие диэлектрики

Для начала давайте поймем, почему новое поле появляется именно при смещении. Тут как раз все просто, ведь теперь из беспорядочного состояния диэлектрик становится более упорядоченным — отрицательные заряды теперь расположены левее своих положительных зарядов. Как раз это и создает новое поле.

Проницаемость диэлектрика

А как же измерить, насколько внутреннее поле ослабевает внешнее? Что-ж, здесь все очень просто. Такая мера называется электрическая проницаемость или проницаемость диэлектрика (наверняка вы уже слышали такой термин). Обычно говорят, что проницаемость диэлектрика это постоянная, но на самом деле в связи с тем, что поляризация протекает довольно долго, будем говорить, что эта величина зависит от времени действия внешнего поля.

Как на проницаемость диэлектрика влияет температура?

Но только ли время влияет на электрическую проницаемость. Выясняется, что не только. Оказывается, если увеличить температура, то вместе с этим еще и увеличивается интенсивность теплового движения, а это, как вы понимаете, напрямую влияет на проницаемость диэлектрика. Почему? Все просто: переход в устойчивое состояние становится более сложным, а поэтому диэлектрическая проницаемость с увеличением температуры становится все меньше.

Параметры изоляции

К числу основных относятся:

  • электропрочность;
  • удельное электрическое сопротивление;
  • относительная проницаемость;
  • угол диэлектрических потерь.

Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.

Волокнистые электроизоляционные материалы

Волокнистые материалы часто применяются для изоляции в электрических аппаратах и машинах. К ним относят материалы растительного происхождения (каучук, целлюлозу, ткани), синтетический текстиль (нейлон, капрон), а также материалы из полистирола, полиамида и т.д.

Жидкие диэлектрики

Органические волокнистые материалы обладают высокой гигроскопичностью, поэтому редко используются без специальной пропитки.

В последнее время взамен органических материалов применяют синтетические волокнистые изоляции, которые обладают более высоким уровнем нагревостойкости. К ним относится стеклянное волокно и асбест. Стеклянное волокно пропитывают различными лаками и смолами для повышения его гидрофобных свойств. Асбестовое волокно обладает малой механичной прочностью, поэтому нередко в него добавляют хлопчатобумажное волокно.

Параметры изоляции

К числу основных относятся:

  • электропрочность;
  • удельное электрическое сопротивление;
  • относительная проницаемость;
  • угол диэлектрических потерь.

Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.

Жидкие диэлектрики

Электропроводность твердых тел

Она объясняется перемещением не только ионов самого изолятора, но и заряженных частиц примесей, содержащихся внутри твердого материала. По мере прохождения через твердый изолятор происходит частичное удаление примесей, что постепенно сказывается на проводимости тока. Учитывая особенности строения кристаллической решетки, перемещение заряженных частиц обусловлено флуктуацией теплового движения.

При невысоких температурах происходит движение положительных и отрицательных ионов примесей. Такие виды изоляции характерны для веществ с молекулярной и атомной кристаллической структурой.

Для анизотропных кристаллов величина удельной проводимости меняется в зависимости от его осей. К примеру, в кварце в направлении, расположенном параллельно основной оси, она превышает в 1000 раз перпендикулярное положение.

В твердых пористых диэлектриках, где практически нет влаги, незначительное повышение электрического сопротивления приводит к повышению их электрического сопротивления. У веществ, которые содержат примеси, растворимые в воде, наблюдается существенное уменьшение объемного сопротивления из-за изменения влажности.

Периодичность проверок

Для диэлектрических калош через каждые 12 месяцев проводят плановые испытания, прикладывая напряжение 3,5 кВ на протяжении 1 мин.

Также читайте: Назначение диэлектрических перчаток в электроустановках

Жидкие диэлектрики

Кроме этого могут проводиться внеочередные проверки в следующих случаях:

  • в результате падения;
  • после ремонта;
  • после замены отдельных элементов;
  • при возникновении повреждений.

Испытания вспомогательных защитных средств проводятся по утверждённым инструкциям, основные положения из которых гласят:

  1. Механические испытания следует проводить прежде электрических.
  2. Для испытаний привлекаются исключительно квалифицированные специалисты, прошедшие специальную аттестацию.
  3. Пред проверкой необходимо удостовериться в наличии заводской маркировки и целостности изоляционных поверхностей.

При несоответствии испытуемого образца данным условиям, испытания проводиться не могут вплоть до устранения обнаруженных недостатков.

Твердые диэлектрики.

Жидкие диэлектрики.

Органические соединения, в частности углеводороды, широко используются в качестве жидких диэлектриков. Для углеводородов характерны низкая диэлектрическая проницаемость (от 2 до 4) и умеренно высокое удельное электрическое сопротивление (ок. 1012 ОмЧсм). Поскольку углеводороды не содержат кислорода или азота, они являются химически стабильными и поэтому подходят для использования в сильных электрических полях, в которых процессы ионизации усиливают химическую нестабильность. Примерами жидких диэлектриков могут служить циклические углеводороды, такие, как бензол (C6H6), или ациклические соединения типа гексана . Большинство углеводородов встречаются в виде смесей; химический состав и строение входящих в них компонентов точно не известны. К ним относятся, в порядке возрастания вязкости, петролейный эфир, парафиновое масло, трансформаторные масла, парафин и различные воски.

Некоторые галогенопроизводные продукты, такие, как хлороформ (CHCl3) и четыреххлористый углерод (CCl4), являются диэлектриками. К жидким неорганическим диэлектрикам относятся такие сжиженные газы, как двуокись углерода и хлор.

Важным преимуществом жидких диэлектриков является их способность к восстановлению своих свойств после искрового пробоя и способность проводить тепло, что важно для трансформаторов. Твердые диэлектрики

Твердые диэлектрики.

К типичным твердым электроизоляционным материалам относятся фарфор, стекло, кварц, натуральная и синтетическая резина и пластики. Тонкие слои твердых изоляторов могут иметь очень высокие значения напряжения пробоя и удельного электрического сопротивления, что видно из приводимой ниже таблицы.

Повышение приложенной разности потенциалов к рассматриваемому образцу твердого или жидкого диэлектрика увеличивает ток через него. Это увеличение приводит к отрыву электронов и образованию пространственного положительного заряда вблизи катода. Электрический пробой является результатом искажения электрического поля внутри изолятора. Как твердые, так и жидкие диэлектрики подвержены поляризации, т.е. их диэлектрическая постоянная больше единицы. Поляризация приводит к появлению диэлектрических потерь при приложении переменных электрических полей. Некоторые материалы, такие, как кварц, полиэтилен и некоторые газы, имеют очень низкие диэлектрические потери даже в высокочастотных электрических полях.

СВОЙСТВА ТВЕРДЫХ ДИЭЛЕКТРИКОВ
Материал Электрическая прочность, кВ/см Диэлектрическая проницаемость Удельное электрическое сопротивление, 1014 ОмЧсм
Слюда 5,0–7,0
Стекло (разное) 200–700 3,0–12,0 10–6 ё104
Метилметакрилат (люсит) 3,3–4,5
Фарфор (неглазурованный) 5,0–7,0
Эбонит 2,0–3,5 104

Вопрос 5

Электромонтажные работы неразрывно связаны со строительством во всех областях народного хозяйства. Поэтому вполне естественно разнообразие технологических методов ведения электромонтажных работ и широкая номенклатура (перечень названий) применяющихся материалов и изделий.Особенно разнообразны электромонтажные изделия для прокладки, закрепления, соединения и присоединения различных проводников (голых шин, кабелей, голых и изолированных проводов), защиты их в необходимых случаях от вредного воздействия окружающей среды и механических повреждений, а также для установки отдельных аппаратов, светильников и т. п.Электромонтажные изделия почти не выпускаются заводами промышленности. В основном они изготовляются электромонтажными организациями в своих мастерских. Однако ведущие электромонтажные организации, одной из которых в области электромонтажа промышленных предприятий является Главэлектромонтаж Министерства строительства, уже многие годы производят на своих специализированных заводах электромонтажные изделия в сравнительно больших количествах и ассортименте. Эти изделия являются массовыми и полностью отвечают требованиям, предъявляемым к заводской продукции.Ниже приводится описание электромонтажных изделий, применяемых только во внутренних электроустановках.Электромонтажные изделия для наружных установок, воздушных линий электропередачи (которые принято называть арматурой линий), крановых троллеев,а также муфты для соединения и оконцевания кабелей не рассматриваются.В тексте, таблицах и на рисунках для изделий указаны типы, принятые в системе Главэлектромонтажа. В брошюре описаны лишь сами изделия. Об их использовании даны только самые общие сведения, гак как технике применения электромонтажных изделий посвящается другая брошюра, готовящаяся к печати в «Библиотеке электромонтера».

Помещаем в постоянное поле

Теперь давайте немного отойдем от того, какие вещества могут быть диэлектриками и какие не могут ими быть, тем более что мы уже достаточно хорошо разобрались в этом вопросе.

Жидкие диэлектрики

Давайте попробуем сейчас ответить на такой интересный вопрос: что же будет, если диэлектрик поместить в постоянное электрическое поле? Сначала давайте дадим краткий ответ, а потом уже разберемся в этом вопросе более подробно. Так вот, если поместить диэлектрик в электрическое поле, то заряды диэлектрика, из которых он состоит будут под воздействием некоторых сил, которые будут:

  • смещать связанные заряды (это только электроны и ионы)
  • накладывать на беспорядочное движение тепла поля, которое будет это движение упорядочивать (положительные заряды будут идти в одну сторону с полем, а отрицательные — в обратную)

Что будет давать упорядоченное перемещение

При упорядочивании зарядов диэлектрика есть целых два варианта развития событий:

  • новое равновесное состояние с другим распределением зарядов, причем движение сразу прекращается при достижении равновесия
  • пока поле будет действовать, упорядочивание может длится, пока в нем еще останутся свободные электроны или свободные ионы, о которых мы поговорили выше

Как не путать проводники и диэлектрики

До этого мы с вами очень подробно рассмотрели диэлектрики, узнали, как они работают, как устроены внутри. Теперь же давайте узнаем, как они используются в реальной жизни и как не спутать их с проводниками.

Где применяются диэлектрики

Диэлектрики применяются во многих сферах жизни, а именно в тех, где нужен электрический ток.

Жидкие диэлектрики

Особенно активно их используют в сельском хозяйстве, промышленности и приборостроении.

Твердые диэлектрики

Диэлектрики бывают разные. Например, твердые диэлектрики могут обеспечивать безопасность приборов, работающий на электричестве. Они являются хорошими изоляторами тока, а значит очень сильно влияют на долговечность этих приборов. Одним из примеров можно назвать диэлектрические перчатки.

Жидкие диэлектрики

А вот диэлектрики жидкие нужны немного для другого. Они то используются в конденсаторах, кабелях, системах охлаждения с циркуляцией воздуха и во многих других приборах.

Газообразные диэлектрики

Также существуют и газообразные диэлектрики, хоть они и не так популярны в наши дни. Эти диэлектрики создала сама природа. Например, водород используется для мощных генераторов, у которых просто запредельная теплоемкость, а вот азот помогает по максимуму сократить окислительные процессы. Самым же простым примером газообразного диэлектрика мы считаем воздух. Да-да, это тоже диэлектрик, причем еще и тепло может отводить.

Электроизоляционные нефтяные масла

Трансформаторное масло, применяемое для силовых трансформаторов, имеет максимальное распространение в электротехнике среди жидких изоляционных материалов. Им заполняют поры в волокнистой изоляции, расстояния между обмотками, увеличивает электрическую прочность изоляции, способствует отводу теплоты. Кроме того, трансформаторное масло активно используется в масляных выключателях высокого напряжения. В таких аппаратах между расходящимися контактами выключателя происходит разрыв электрической дуги, в результате чего канал дуги быстро охлаждается и гасится. Для получения нефтяных минеральных электроизоляционных масел используют нефть, проводя ее ступенчатую перегонку с поэтапным выделением на каждой ступени фракции и детальной очистки от примесей с помощью серной кислоты, последующей промывки и сушки.

Электрическая прочность такого масла представляет собой величину, которая весьма чувствительна к увлажнению. Даже при незначительной примеси воды в масле наблюдается существенное снижение данной физической величины. При действии электрического поля, происходит втягивание капелек эмульгированной воды в те места, в которых напряженность поля имеет максимальное значение, в результате чего и развивается пробой.

При резком понижении электрической прочности масла в нем присутствуют не только молекулы воды, но и волокнистые примеси. Они впитывают воду, что существенно сказывается на электрических характеристиках жидкого диэлектрика.

Жидкие диэлектрики
Смотреть галерею

Где применяются диэлектрики и проводники

Материалы применяются во всех сферах деятельности человека, где используется электрический ток: в промышленности, сельском хозяйстве, приборостроении, электрических сетях и бытовых электроприборах.

Выбор проводника обусловлен его техническими характеристиками. Наименьшим удельным сопротивлением обладают изделия из серебра, золота, платины. Использование их ограничено космическими и военными целями из-за высокой себестоимости. Медь и алюминий проводят ток несколько хуже, но сравнительная дешевизна привела к их повсеместному применению в качестве проводов и кабельной продукции.

Чистые металлы без примесей лучше проводят ток, но в ряде случаев требуется использовать проводники с высоким удельным сопротивлением — для производства реостатов, электрических печей, электронагревательных приборов. Для этих целей используются сплавы никеля, меди, марганца (манганин, константан). Электропроводность вольфрама и молибдена в 3 раза ниже, чем у меди, но их свойства широко используются в производстве электроламп и радиоприборов.

Твёрдые диэлектрики — материалы, обеспечивающие безопасность и бесперебойную работу токопроводящих элементов. Они используются в качестве электроизоляционного материала, не допуская утечки тока, изолируют проводники между собой, от корпуса прибора, от земли. Примером такого изделия являются диэлектрические перчатки, про которые написано в нашей статье.

Жидкие диэлектрики используют в конденсаторах, силовых кабелях, циркулирующих системах охлаждения турбогенераторов и высоковольтных масляных выключателей. Материалы применяют в качестве заливки и пропитки.

Газообразные изоляционные материалы. Воздух — естественный изолятор, одновременно обеспечивающий отвод тепла. Азот применяется в местах, где недопустимы окислительные процессы. Водород применяется в мощных генераторах с высокой теплоёмкостью.

Слаженная работа проводников и диэлектриков обеспечивает безопасную и стабильную работу оборудования и сетей электроснабжения. Выбор конкретного элемента для поставленной задачи зависит от физических свойств и технических параметров вещества.

Что такое диэлектрическая проницаемость

Какая проводка лучше — сравнение медной и алюминиевой электропроводки

Как работает пьезоэлемент и что это такое пьезоэффект

Что такое электрический ток простыми словами

Что такое конденсатор, виды конденсаторов и их применение

Что такое потенциал и разность потенциалов между двумя точками

Причины потери электрической прочности

В тех диэлектриках, которые применяются на практике, есть свободные заряды. При перемещении электронов увеличивается электрическая проводимость. Поскольку зарядов немного, изоляторы успешно проходят такое испытание. Электрическая прочность изоляторов определяет основные области их промышленного применения.

Изоляция необходима для изоляции тока, регулировки температуры, напряженности электрического поля, иных характеристик, которыми обладают приборы и устройства.

Если в конденсаторе в качестве диэлектрика применяется пьезоэлектрик, он под воздействием переменного напряжения меняет свои линейные характеристики, превращается в генератор ультразвуковых колебаний.

Причины уменьшения электрической прочности

Наиболее отрицательное влияние на электрическую прочность изоляции оказывает переменное напряжение и температура. При переменном напряжении, то есть напряжении, которое меняется время от времени, например, электростанция выдает в линию 220 кВ, из-за технической неисправности или планового ремонта, величина напряжения уменьшена до 110 кВ, после ремонта стало опять 220 кВ. Это и есть переменное напряжение, то есть изменяющееся за определенный период времени. Ввиду того что в Российской Федерации 50 процентов электроустановок для передачи электроэнергии уже выработали свой ресурс (а он составляет 25-30 лет), то переменное напряжение довольно-таки частое явление. Среднее значение такого напряжение определяется с помощью графика:

Жидкие диэлектрики
Или определяется по формуле: Температура нагрева кабеля, вследствие протекания электрического тока, значительно уменьшает срок службы проводника (происходит, так называемое, старение изоляции). Зависимость напряженности пробоя при различной температуре изображена на графике:

Жидкие диэлектрики

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: